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Abstract 

This paper aims at extending knowledge of the link between airline business models and 

service quality. It specifically asks whether low cost carriers (LCCs) are more punctual 

than traditional network carriers (TNCs). Previous research has not answered this 

question for the European case so far. Therefore, this paper complements existing 

research and adds transparency and accuracy to simple on-time performance (OTP) 

rankings that are available on the internet. It builds on empirical evidence from more 

than one million intra-European flights, including flights from 8 European TNCs and 5 

European LCCs. Our statistical analyses indicate that LCCs are more punctual than 

TNCs. At the same time, we have to expect that the overall OTP advantage of LCCs is 

the result of a heterogeneous set of individual airlines’ performances. Thus, generalizing 

our findings to other airlines is problematic.  
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1 Introduction 

This paper investigates the connection between airline business models and service 

quality in the European airline industry.  It builds on current academic literature as well 

as empirical evidence from more than one million intra-European flights, including 

flights from 8 traditional network carriers (TNCs) and 5 low cost carriers (LCCs). 

Based on this sample we want to find out: do LCCs provide significantly better service 

than TNCs? 

In our analysis we use airlines’ on-time performance (OTP) as a measure of service 

quality. The reason behind is that poor OTP is what most customers complain about 

(Mazzeo, 2003). By investigating OTP we focus on service aspects that are non-visible 

while booking. Whereas the customer is able to judge about an airline’s scheduled 

travel time while booking, he remains uncertain about the actual reliability of that 

airline. We measure this reliability in two ways: first, we use scheduled (arrival) times 

as reference for OTP; and second, we refer to the shortest travelled time on a particular 

route. Both are compared with actual (arrival) times on individual flight level. We 

introduce the shortest travelled time because the scheduled time are posted by airlines 

themselves, indicating that airlines can easily manipulate OTP. We use a statistical 

approach to analyse our data. With the help of two-mean comparisons and regression 

analyses we will test some dedicated hypotheses.  

Equally relevant is the question of why we suspect a difference at all in LCCs’ and 

TNCs’ service quality. Basically, we start from two different lines of reasoning. First, 

research reveals that expectations about product or service quality tend to be linked to 

price levels. Accordingly, we assume that certain passengers have prejudices about 

LCCs’ OTP. We want to reassess and test these prejudices. Another argumentation 

starts from an operational perspective, suggesting that punctuality is fundamentally 

inherent in the uncomplex LCC business model. Certain business model choices, such 

as the one to mainly operate to and from uncongested, secondary airports, are expected 

to have a positive effect on OTP.  

There are publically available rankings that evaluate airlines according to their OTP. 

However, these rankings make rather rudimental judgments. A set of rankings from 

private companies consistently receives attention. These rankings mainly compare the 

share of on-time flights across airlines. Their method simplifies a complex situation of 
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various factors interacting with each other. It  neglects, for instance, that some airlines 

depart and arrive from airports that are supposedly more difficult to land in. In fact, it is 

problematic to “evaluate players who compete in overlapping but not identical 

tournaments” (Caulkin et al., 2012, p. 710). It has been shown that airport difficulty 

makes a difference in the airlines’ OTP scores (Caulkin et al., 2012). Thus, a simple 

mean comparison of OTP rates between LCCs’ and TNCs’ OTP without investigating 

the circumstances is not sufficient. Instead we are curious about what happens when we 

compare LCCs and TNCs under similar circumstances.  

Despite – or probably because – of their simplicity, rankings are often cited in the news 

or airlines’ marketing campaigns. Only in this year, quite a few well-known newspapers 

referred to air traffic statistics firm FlightStats. FlightStats’ "On-time Performance 

Service Awards” recently announced Scandinavian Airlines to be Europe’s most 

punctual airline, outperforming KLM and Ryanair on second and third position. Partly 

decoupled from these results, airlines aggressively market their allegedly high 

punctuality. For instance, together with each of Ryanair’s monthly traffic statistics there 

is a comment on the website, announcing Ryanair to be Europe’s No.1 on-time airline – 

supposedly beating easyJet in OTP every week since 2003.
1
 

With our analysis we aim at adding transparency and accuracy to the discussion about 

airlines’ OTP.  We achieve this by using regression models that estimate the overall 

LCC effect and individual airline-specific effects while controlling for airport variables 

as well as economic, logistical and weather variables. Thereby, we find out to whether 

the potential LCC OTP advantage is simply rooted in airport and route choice. 

We believe that our research is important due to several reasons. First, in academic 

research the European case of this topic is relatively understudied. No paper before has 

particularly investigated the difference in OTP between European LCCs and TNCs on 

individual flight level. Second, delays have serious cost implications
2
. Delays induce 

costs not only for passenger, but also for society at large and, of course, for airlines. 

Since a more stringent European passenger bill of rights came into force in 2004, 

                                                           
1 In another press release Ryanair states: “Yet again EasyJet are unable to match Ryanair’s prices or 

our industry leading punctuality. We again call on EasyJet to resume publishing monthly punctuality 
stats on its passenger website instead of hiding their abysmal performance in quarterly investor reports. 
EasyJet can’t compete with Ryanair’s low fares or punctuality which is why millions more passengers 
prefer to fly on Ryanair’s low fare, on-time flights than on EasyJet’s high fare, frequently delayed flights” 
(Ryanair, 2011) 
2
 For an intensive overview of costs of delay we recommend Cook and Tanner’s (2011) research. 
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airlines of all types are obliged to compensate passengers in case of cancelled, diverted 

or extensively delayed flights
3
.  

We proceed with our research according to the following structure. Section 2 clarifies 

how we understand OTP in this paper. Moreover, we will consult previous research to 

investigate determinants of flight delays. Section 3 then provides a historical 

perspective on the European airline industry, describing how LCCs have emerged. The 

section then outlines the characteristics of the LCC business model and puts it into the 

context of OTP. Afterwards, section 4 draws on the research design. The results of the 

research are then presented in section 5. The final section contains the conclusion.   

                                                           
3
 “In the event of long delays, the airline has to offer meals, refreshments, hotel accommodation if 

necessary, and means of communication. If the delay exceeds 5 hours, it has to propose refunding the 
ticket (with, if necessary, a free flight to your point of departure)” (European Union, 2005)  
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2 Airline On-Time Performance  

There are quite a few papers on service quality and OTP. The insights from that will be 

highly valuable for our research design. The papers mainly answer three broad research 

questions: (1) What are accurate OTP metrics? (Caulkins et al., 2012; Thrasher & 

Weiss, n.d.; Wang, 2007; Sherry, Wang, Xu, & Larson, n.d.) (2) What are sources and 

effects of delays?  (3) How do delays propagate in the network? (Beatty, Hsu, Berry, & 

Rome, 1998; Wang, 2007). In section 2.1 we present papers that relate to the first 

question. The vast majority of articles, however, covers the second question. Their 

findings are included in section 2.2
4
. 

2.1 Definition of On-Time Performance 

There are a number of different indicators that help to evaluate airlines’ OTP. This 

section aims at shedding light on the existing definitions and measurements of OTP, 

delays and other related terms, outlining them in the context of air transportation. 

The measurement of OTP actually depends on the perspective taken. Still, most OTP 

measures share a common aim: they intend to measure whether – or to what extent – 

operations comply with an airline’s time schedule. Strictly speaking, they detect any 

deviation from a schedule – be it positive or negative. However, from a consumer’s 

perspective it seems irrelevant whether a flight arrives a few minutes too early or 

perfectly on-time, as long as it is not delayed. Therefore, focus of our research is not on 

schedule deviation (positive, zero or negative) but on delay (zero or positive). This way 

of evaluating OTP is reasonable from a passenger’s viewpoint. However, from an 

operational perspective “early” flights are equally relevant. They induce significant 

costs for airlines, too (Performance Review Commission, 2012). However, we neglect 

this and keep focussing on delays.  

Moreover, we assume that consumers focus on OTP at arrival as we mentioned before. 

A flight may be delayed at departure but still be perceived as a high quality service 

when it at least arrives on-time. Thus, consumers mainly evaluate OTP based on the 

                                                           
4
 Section 2.2 will only investigate the source (“determinants”) of delays. For research on the effects of 

OTP check the following papers. For instance, scholars explore the effect OTP itself has on market share 
(Suzuki, 2000), ticket fares (Forbes, 2008), customer satisfaction (Steven, Dong, & Dresner, 2011) or 
airline profitability (Dresner & Xu, 1995). Again others quantify hard and soft costs that result from 
delays (Kingdom, Tanner, Enaud, Expert, & Unit, 2010; Cook, 2010). 
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question: does the flight arrive latest at the scheduled arrival time that I agreed with 

during booking?  

Whether or not a flight arrives “on-time” is a widely accepted OTP indicator that also 

links to what we just said about the customer’s quality assessment. In that case arriving 

“on-time” does not necessarily require perfect adherence to timetables. Instead, 

customers may still be satisfied when the flight arrives with only a short delay. 

Accordingly, flights with a delay of x minutes compared to the schedule are still 

considered “on-time”.  

Those who are professionally concerned with OTP, usually allow for 15 minutes of 

delay. This indicator is also known as D+15 OTP (Wu, 2005). With respect to the 

allowance, it is expected that short delays of below 15 minutes still ensure operations to 

run smoothly (Röhner, 2009) and passengers to carry on their connecting journey or 

other activities as planned. We appreciate the D+15 in our research because of its 

compactness. Two of the most prominent users of D+15 are the U.S Bureau of 

Transportation Statistics (BTS) and the Central Office for Delay Analysis (CODA), a 

service of EUROCONTROL. But also scholars and other stakeholders in the industry 

adopted this metric. 

The D+15 is eligible, but remains debatable. There are two drawbacks: first, the on-time 

allowance of 15 minutes is considered arbitrary (Rupp, 2001; see Brons & Rietveld, 

2007 for rail); and second, D+15 as single measurement obscures important 

information. Analogous to what Skagestad (cited by Olsson & Haugland, 2004) notes 

on rail OTP measurement, the indicator mainly suffers from its lacking distinction 

between small and large delays. There are no weights attached to different magnitudes 

of delays (Brons & Rietveld, 2007) – as long as the delay is above the defined 

allowance, it is recorded as such.  

As a solution to this reporting problem there are two approaches available. The first 

approach comprises a number of different allowance levels (e.g. 5, 10, 30, 45 minutes). 

Such differentiation is justified because the individual perception of punctuality differs 

from passenger to passenger, with some being stricter and some more forgiving than 

others (Rupp, 2001).  Moreover, for intra-European flights smaller allowances are 

useful as the 15 minutes allowance usually makes up a considerable fraction of 

scheduled block time (Performance Review Commission, 2012). In line with this, 
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CODA and the BTS report on the share of punctual flights also using other allowance 

levels than 15 minutes, too. The second approach, which CODA and BTS also follow, 

is the usage of the arrival delay in minutes. This is probably the most straight forward 

measurement of OTP. Still, it needs to be kept in mind that when calculating average 

delays these averages are over-sensitive to largely delayed flights, which only reflect an 

extremely small share of total flights (Spehr, 2003).  

We conclude that for our research two OTP indicators are essential: (1) an indicator that 

measures the occurrence of delays (2) another indicator that measures the magnitude of 

arrival delays.  

All measures that we introduced so far use the respective airline’s scheduled arrival (or 

departure) time as a reference. Certainly, this is justified because consumers agree with 

– and therefore trust in – the indicated times. However, in our study we want to go 

beyond that. We are aware that airlines can to some extent actively influence their OTP 

by artificially stretching scheduled flight times. The schedules are subject to so called 

“schedule padding”, which means that airlines anticipate some strategic delays by 

adding buffer times to realistic travel times. When we now compare LCCs’ and TNCs’ 

OTP we want to account for this potential manipulation.  

Mayer and Sinai (2002) suggest an alternative OTP indicator that is unaffected by 

airlines’ scheduling decisions: so-called excess travel time.  Excess travel time 

measures the difference between actual travel time and the shortest feasible travel time. 

Mayer and Sinai define the shortest feasible travel time as “ the shortest observed travel 

time on a given nonstop route in a particular month” (Mayer & Sinai, 2002, p.17). As 

opposed to that, ordinary delay measures compare actual and scheduled flight times.  

Rupp (2007), who replicated Mayer and Sinai’s approach for his regression analysis, 

adds some important points to the discussion about excess travel time. He remarks that 

the variable provides accurate information on how long it takes for an airline to 

transport passengers in the absence of air traffic congestion. At the same time, excess 

travel time does not account for the different characteristics of individual flights that run 

on a specific route, which is a major disadvantage of this measure. For instance, using 

the route’s monthly minimum travel ignores differences in the aircraft’s type and 

capacity (Rupp, 2007). Furthermore, it neglects that some flights take place at peak 

times whereas others operate at rather quite time slots.  
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To conclude, we will mainly use three measurements of OTP: the arrival delay in 

minutes (delay_min_a), an arrival delay dummy (del>=1_01_a or del>=15_01_a), and 

excess travel time in minutes (excess_min). We define our three OTP measurements as 

follows: 

Variable 

Name 

Variable 

Description 

Computation  

 

delay_min_a Arrival delay in 

minutes 

delay_min_a = scheduled arrival time – actual 

arrival time 

 

with delay_min_a ≥ 0 (early arrivals are 

classified as zero minutes arrival delay) 

del>=1_01_a 

del>=15_01_a 

Whether the flight 

is 1 (15) or more 

minute(s) delayed 

at arrival 

 

      (  )     

 {
                     (  ) 

                      (  )
 

excess_min  Difference between 

actual travel time 

and the shortest 

feasible travel time 

(same route and 

month) 

excess_min = actual travel time – shortest 

feasible actual travel time of the same month + 

delay_min_d 

 

with delay_min_d analogous to delay_min_a but 

at departure and with actual travel time = actual 

arrival time – actual departure time 

Table 1: Three Main Delay Variables 

2.2 Determinants of On-Time Performance 

OTP as measured above is the end result of a myriad of influencing factors. Operations 

are part of a complex system of interaction between different stakeholders, such as 

airlines, airport operators and air traffic flow management (Performance Review 

Commission, 2012). To understand relationships between various factors and OTP this 

section presents a short review of current literature.  

For daily OTP reporting, the IATA introduced a standardized set of delay codes for 

delay causes. Around ninety delay codes help to classify delays according to their cause 

(see Appendix A). Basically, the IATA distinguishes between primary delays and so 

called reactionary delays, which originate from primary delays of previous flights. 

According to statistics of 2011 almost half of all delays can be attributed to delay 

propagation (Performance Review Commission, 2012, p.15).  
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Yet, simply reporting delay codes is not sufficient to get further information about what 

we might control for. Current academic literature complements the picture on delays. 

Mostly analysing large samples of individual flights with statistical methods scholars try 

to better explain the determinants of delays. Their papers’ regression models control for 

similar variables. Some of these variables are included in a simplified list below
5
 and 

shortly described afterwards. To a large extent we aligned the separation into four 

categories with Rupp’s research. We will now check the findings for each of the 

categories. 

Airport Variables Existence and size of hub airport at origin and destination 

Existence and size of the operating airline’s hub at origin 

and destination 

Level of slot coordination  

Economic/Competitive 

Variables 

 

Route yield 

Route load factor (and seating capacity) 

Duopoly/Monopoly route 

Market share route 

Airport concentration 

Logistical Variables Distance 

Departure time 

Day of week 

Season/month 

Aircraft type/age 

Weather Variables Temperature 

Precipitation 

Snow/thunder/rain 

Table 2: OTP's Influencing Factors 

Airport Variables 

Hub effects are significant determinants of delays. Scholars distinguish between hub 

airport effects and hub airline effects. They mostly control for both, using dummies 

according to hub size. Concerning hub airports, Rupp  (2009) finds for the U.S. the 

same as  Santos and Robin (2010) do for Europe: delays at hub airports are larger than 

at non-hub airports. Santos and Robin add to their finding that delays do not increase 

monotonically with hub size. Instead, arrival delays are said to be lower at medium hubs 

compared to big hubs but also compared to small hubs. 

                                                           
5
 Category titles ”airport variables“, ”economic/competitive“ and “logistical variables” adopted from 

Rupp (2007). Variables assigned to each category differ from Rupp (2007). 



10 
 

In another study, Rupp (2007) argues that is not the existence of hub airports that is 

decisive. Instead airline hub size is the primary source of delay. Mayer and Sinai (2002) 

shortly describe the duality of airlines hubs: on the one hand, airlines benefit because 

cross-connection of passengers increases the number of markets served and load factors; 

on the other hand, airlines have to face additional costs of delays.  

However, the effect of airline hubs on delays is not as straight-forward as indicated by 

Mayer and Sinai. In fact, findings are mixed. Rupp & Sayanak (2008) and Rupp (2007)  

find that delays are significantly longer when the flight operates from / to the operating 

airline’s own hub. Larger airline hubs cause longer delays. Some scholars find opposite 

results (Mazzeo, 2003; Santos & Robin, 2010). Santos and Robin try to find 

explanations for the negative coefficient in the European setting. They assume that the 

hub-and-spoke system in Europe, the subject of their investigation, is not as extensive 

and more constrained with respect to slot coordination as the U.S. counterpart that is 

under investigation in Rupp’s research. 

If we like to learn how OTP varies across airlines, we also have to consider that airlines 

only have limited freedom in scheduling their flights. Santos’ & Robin’s (2010) include 

variables for slot coordination because slot coordination is a common feature in Europe 

compared to the U.S. In fact, at capacity constrained airports, slot coordination restricts 

airlines in their freedom to schedule flights. European airports are divided into three 

categories: non-coordinated
6
, schedule facilitated

7
 and coordinated

8
.  

Regressions show mixed results on the effect of slot coordination, depending on 

whether origin or departure airports are under investigation and which sample (e.g. only 

coordinated airports) is used. Including all airports, however, indicates that OTP at 

origin airports decreases with the level of slot coordination. Also Rupp (2009) considers 

slot coordination in this research about the internalization of delays. Similar to Santos 

and Robin he also creates sub-samples of airports according to their level of slot 

coordination. In particular, he performs robustness checks on a sample of non-restricted 

                                                           
6 A level 1 airport is defined as “a non-coordinated airport is one where the capacities of all the systems 

at the airport are adequate to meet the demands of users” (IATA, 2010, p.5). 
7 A level 2 airport is defined as “a schedules facilitated airport (Level 2) is one where there is potential 

for congestion at some periods of the day, week or scheduling period, which is amenable to resolution 
by voluntary cooperation between airlines and where a schedules facilitator has been appointed to 
facilitate the operations of airlines conducting services or intending to conduct services at that airport” 
(IATA, 2010, p.7). 
8
 A level 3 airport is defined as “a coordinated airport (Level 3) is one where the expansion of capacity, in 

the short term, is highly improbable and congestion is at such a high level […]” (IATA, 2010, p.11). 
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airports. He considers the findings informative as they reveal how carriers behave if 

they are fully free in using the slots they desire.  

Economic/Competitive Variables 

Route load factor, route yield as well as seating capacity are often used as explanatory 

variables for delays. Research reveals that load factors and seating capacity have 

significant effects on delays. Not surprisingly, Rupp and Sayanak’s (2008) study 

reveals: the higher the load factor the longer arrival delays are. It seems natural that 

loading a crowded airplane is more vulnerable to delays. Rupp and Sayanak also control 

for seating capacity and point out that delays increase with seating capacity. However, 

their motivation to include seating capacity comes from another direction: they argue 

that delays that happen to a larger aircraft usually affect more passengers than in the 

case of smaller ones. In view of the assumption that airlines intend to minimize 

customer inconvenience they avoid poor OTP with planes that carry many passengers. 

This is why seating capacity may be categorized as “economic”.  

Similarly consistent are the findings about the effect of yields. Obviously, OTP is higher 

on more profitable routes  (Rupp & Sayanak, 2008; Rupp, 2007; Rupp 2001). Some 

explains this with the assumption that airlines are profit-maximizers that try to retain 

customers especially on high-fare, profitable routes.  

Various types of competitive variables help to explain delays. Most of them aim at 

capturing the level of competition either at airports or on routes. As a measurement of 

competition in most cases either the Herfindahl Hirschman index
9
 or a dummy for the 

existence of monopoly or duopoly routes are put in place.  

The overall effect of competition remains unclear – the findings are not fully consistent. 

A number of scholars find evidence that delays are significantly shorter at more 

concentrated airports. Put differently, airports that are dominated by a small number 

airlines (or even just one) have better OTP (Mayer and Sinai, 2003a; Brueckner, 2002; 

Rupp & Sayanak, 2008). Others disagree and find that airport concentration (at origin) 

and delays are positively correlated  (Rupp, 2009; Rupp, 2007).  

Next to competition right at the airport, competition on routes is of major interest. 

Mazzeo’s results indicate that OTP is relatively poor on monopoly routes. As 

                                                           
9
 Burghouwt, Hakfoort, & Ritsema van Eck (2003) list some alternative concentration measures. 
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competition increases Mazzeo expects delays to decrease. Rupp and Sayanak, however, 

report more differentiated results. They find evidence that is adverse to Mazzeo’s 

findings. They explain their adverse finding by the fact that there might be better OTP 

on monopoly routes when these routes connect less congested or smaller airports. In 

another paper, Rupp (2001) claims that monopoly routes have better OTP since the 

monopolistic airline presumably has more freedom when it comes to scheduling.  

Logistical Variables   

Some studies include individual flight data and, thus, are able to control for day-of-

week effects. EUROCONTROL  (Performance Review Commission, 2012) collects 

such data and reports higher average delays on weekends. Increased traffic demand on 

weekends combined with limited staff available may explain this increase in delays on 

weekends. Mazzeo (2003) adds that mainly Fridays suffer from higher demand, whereas 

the Saturday is a less busy travel day. According to him, Saturdays are comparable with 

Tuesdays – as flights are more likely to be on-time.  

Similar to the effect of particular days, arrival or departure hours have a significant 

influence on OTP. Scholars find considerable evidence, indicating that delays 

accumulate during the day and, thus, tend to be longer at later hours (Rupp & Sayanak, 

2008; Rupp, 2007). By way of illustration, Mazzeo (2003) remarks that a morning flight 

at 8 am is usually nine minutes less behind schedule than a flight scheduled at 8 pm.  

Other logistical effects involve seasonal effects. Sometimes seasonal variables are 

included to indirectly capture weather effects. Plausibly, weather varies by season with 

poor weather usually occurring at winter time. At the same time, the summer season is a 

busy travel season and therefore prone to delays. Rupp’s (2009) investigation of 

monthly average delays over period of twelve years highlights that: month with most 

delays are December and January; fewest delays occur mainly in September and 

October.  

Distance from origin to destination is another useful explanatory variable. It is expected 

that the longer the distance is, the higher is the chance for a pilot to make-up departure 

delays by higher speed (Rupp, 2001). In line with this, Rupp (2007) as well as Rupp and 

Sayanak (2008) find that longer flights have on average slightly less arrival delays.  
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Rather exceptional is the inclusion aircraft specific variables. Aircraft specific effects 

comprise age of the aircraft, type of aircraft (Boeing vs. Airbus) and sometimes – if not 

included already as economic variable – seating capacity.  

Weather Variables 

Weather is a significant predictor of OTP. Airport operations are vulnerable to strong 

winds, low visibility, freezing conditions or snow. A temporary cut in capacity is the 

result (Commission, 2005). As expected, poor weather conditions cause significantly 

longer delays (Rupp & Sayanak, 2008). On days with thunderstorms, the chance of long 

delays is particularly high. On average, flights on such days are estimated to be twelve 

minutes late (Mazzeo, 2003). Frost, as compared to that, requires additional treatment of 

runways and airplanes. Typically, airports are responsible to put maintenance and de-

icing teams in place (Performance Review Commission, 2012). At the same time, 

special winter schedules help to account for delays in advance (Performance Review 

Commission, 2012).  

Schedule Padding 

All the presented findings measure to what extent different factors influence OTP. 

Nonetheless, as indicated before, schedules partly account for delays already. 

Embedded buffer times allow airlines to still comply with their schedule even in case of 

small-scale irregular operations. This process is also known as schedule padding.  

Nonetheless, airlines’ incentive to include buffer times is limited. Airlines’ incentive to 

maximize fleet utilizations due to economic reasons counteracts to schedule padding 

(Wu, 2005). Wu notes that the delay difference between an ideal scenario of zero delays 

and the reality constitutes so called inherent delays which then reflect an airline’s 

schedule planning philosophy. 

EUROCONTROL (Performance Review Commission, 2012) expresses it in other 

words by saying that the level of schedule padding reflects an airline’s strategy and its 

OTP targets. If true system performance – instead of inconvenience for passenger – is in 

focus of investigation, schedule padding should be considered in the analysis. 

Accordingly, scholars often use excess travel time as presented in chapter 2.1 as a 

measure of delay that allows isolating an airline’s true operational performance. 
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3 The Low Cost Segment in the Airline Industry 

The evolution of the low cost segment in the U.S., Europe and elsewhere arguably 

marks a drastic shift in the recent history of air transportation (Lee, 2003). When 

markets where growing rapidly and liberalization progressed, more and more LCCs 

ermerged. Today, passengers are often free to choose between TNCs, some smaller 

regional carriers and, of course, LCCs. The next section examines how LCCs have 

emerged in Europe and presents the current status of this development as well as an 

outlook to challenges faced by that carrier type. Section 3.2 then outlines LCCs’ 

business models. Resting upon chapter 2.2, we will derive implications for OTP.  

3.1 The Emergence of Low Cost Carriers in Europe 

By all means, the low cost segment in the European domestic airline industry has gained 

dramatically in market share. Markets prior to EU traffic liberalization were fully 

dominated by TNC. Then in the late 1990s, when any airline with a valid Air Operator 

Certificate could enter the intra-European market (Gillen & Lall, 2004), competition 

became price-based and balance of power shifted.  

Ryanair was one of the first LCCs to step in. Existing already years before and close to 

bankruptcy in the early 90s (Casadesus-masanell & Ricart, 2010), the airline 

fundamentally changed its business model towards simple and cheap itinerary. Apart 

from easyJet, which started operating in 1995 (Williams, 2001), a number of other 

LCCs have emerged since then. 

In a continuously growing market, the LCCs collectively succeeded in siphoning off 

market shares of TNCs.  While LCCs’ share of total seat capacity within the European 

market was around 14%  in August 2003, in August 2012 38% of passengers were 

transported by LCCs (OAG, 2012). Accordingly, the overall market grew slower than 

the LCC’s market share. The largest players are still Ryanair and easyJet, serving 

around 78 and 58 million passenger yearly respectively
10 and covering a large 

geographical scope. 

Despite their fast growth, LCCs are increasingly confronted with challenges. For 

example, the clash between carrier types has led TNCs to cut their fares on routes of 

direct competition as also Ito and Lee’s ( 2003) research about the U.S. market finds 

                                                           
10

 Figures from 2011. Derived from the airlines’ websites. 
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out. Moreover, some TNCs such as British Airways and KLM responded to competitive 

confrontation by establishing their own low-cost subsidiaries Go Fly and Buzz. Also 

other TNCs entered competition in the low cost segment
11

.  

Another challenge is a stagnation of market growth for the low cost segment in Western 

Europe. Compared to August 2011, in August 2012 there where around 6,000 low cost 

flights less and almost 700,000 seats less. But at least Eastern Europe constitutes a ray 

of hope for LCCs and other airlines. With yearly growth rates in LCC seating capacity 

of almost 190% this market remains a major opportunity for future growth. We 

conclude that competition between LCCs and TNCs remains rough and it certainly also 

covers service quality.    

3.2 Low Cost Business Models and their Implications for 

On-Time Performance 

Years before Ryanair put its low cost service into operation, Southwest Airlines 

pioneered in the U.S. with the first low cost business model of its kind. Essentially, the 

idea was to provide simple point-to-point services on short-haul urban markets that 

were carried out at high frequency and at low fares (Gillen & Lall, 2004). While 

Southwest was the first LCC ever, Ryanair is probably the airline that adopted 

Southwest’s idea in the most extreme way (Tretheway, 2004).  

Ryanair and other LCCs clearly follow the guiding principle of simplicity – or as Gillen 

and Lall (2004) phrase it in “simplicity of product design, simplicity of processes and 

simplicity of organization” (p.50). Accordingly, LCCs stick to the leitmotiv “no-frills”. 

There is no business class or first class, no assigned seats, no food on board or checked 

baggage without extra charge, no frequent flyer programme and online-only ticket 

purchase. In the case of Ryanair there is even a fully standardized fleet.  

Business model choices have consequences – also with respect to service quality. From 

an operational perspective, the simplicity approach as stated by Gillen and Lall (2004) 

may facilitate good service quality compared to operations in the complex world of 

TNCs. Concerning passenger perception, however, the low fare policy is an important 

                                                           
11

 Lufthansa, for instance, which already has its low cost subsidiary Germanwings in place, is currently 
planning another LCCs under the codename Direct4U. In view of this development, experts warn about 
brand dilution and cannibalization of the parent airline’s traffic (Graham & Vowles, 2006). So, until now, 
the long-term future of the so-called “carrier-within-carrier” segment remains unclear. 
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quality indicator if no other information is available (Zeithaml, 1981; Olander, 1970). 

Accordingly, Casadesus-Masanell and Ricart (2010) point out that Ryanair’s low fares 

create low expectations about service quality.  

The price quality association is also what Rupp and Sayanak (2008) inspired to conduct 

their research “Do Low Cost Carrier Provide Low Quality Service?”. With their 

research they fill a void in literature that addresses the OTP of LCCs. By analysing 

around than six million domestic flights in the U.S. they show that LCCs are slightly 

less delayed than their non-LCC counterparts. They also indicate that the strong 

performance of LCCs is mainly driven by the performance of Southwest Airlines, given 

that the airline has a large market share in the LCC segment. The strong OTP of 

Southwest, again, is found to be embedded in the low cost business model: Southwest 

operates only point-to-point, uses only a single aircraft model, lacks transit passengers 

and serves less congested airports.  

Unfortunately, for the European airline industry no similar research exists. Some 

European studies that we mentioned in chapter 2.2 control for carrier fixed effects; but 

do not report on the results (see Santos & Robin, 2010) – neither do they group carriers 

into types of carriers as Rupp & Sayanak (2008) did. The European research of Santos 

& Robin also uses for every flight the average delay values of the corresponding route 

and carrier during the respective season as dependent variable. Due to this, they are not 

able to explicitly control for factors on individual flight level, such as departure time. In 

fact, LCCs’ tendency to schedule flights out of peak times is another approach to avoid 

congestion which is at the edge of the LCC business model choice and tactics is.  

Certainly another influencing factor for OTP is the level of competition LCCs usually 

face. When recalling chapter 2.2 we find that competition may influence OTP – 

although there is no consensus among scholars about the sign of this effect. In fact, the 

level of competitive confrontation of LCCs is not explicitly embedded in the business 

model but somehow resulting from it. Serving many secondary airports, LCCs do 

hardly ever face perfect competition with TNCs. Gillen and Lall add to that due to 

Ryanair’s fast expansion the airline has a first mover advantage. Even other LCCs 

operating from secondary airports avoid face-to-face competition. As a consequence, 

LCCs sometimes hold a monopolistic position on routes, such as Ryanair, for instance, 

does on routes like to and from Magdeburg Cochstedt or Hamburg/Lübeck. Having a 

monopolistic position may take out pressure for LCCs to be on-time.  



17 
 

Yet, there are also elements in the business model that may result in as competitive 

disadvantage with respect to OTP. Firstly, outsourcing is particularly prominent in the 

Ryanair business model, which reduces control and may compromise OTP (Gillen & 

Lall, 2004). Similar to EasyJet, Ryanair outsources everything except of cabin crew, 

pilots and management functions. Ground handling and to some extent maintenance are 

handed over to subcontractors. In this light, Ryanair’s penalty and reward system for 

subcontractors may have a compensating effect. Secondly, the fast turnaround, which 

LCCs are famous for, may jeopardize OTP. Even though fast turnaround increase 

aircraft productivity, it may also put OTP in danger as schedules have less delay 

absorption ability (Wu & Caves, 2003).  
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4 Research Hypotheses 

Based on the preceding literature review we define five hypotheses that are to be tested. 

All hypotheses refer to the European airline industry. We restrict our interest to Western 

European airlines and intra-/Western-European point-to-point services.  

Essentially, the findings from chapter 3.2 suggest that LCCs’ business models contain 

some distinct features that may lead to better OTP. To recapture, some of these features 

mainly involve LCCs’ airport choice, route choice and scheduling decisions. Thus, we 

state our first hypothesis as follows: 

Hypothesis 1: Given LCCs’ airport, route and scheduling choices, LCCs have 

shorter arrival delays than TNCs.  

Our literature review revealed that airlines may manipulate their OTP by including large 

buffer times. We did not find much evidence from other research about differences in 

scheduled travel times on comparable flights between LCCs and TNCs. 

Notwithstanding; we want to find out whether there is such difference. In this light, we 

propose hypothesis 3 as follows: 

Hypothesis 2: There is a significant difference in scheduled travel time between 

LCCs and TNCs which indicates that on average one or the other carrier type 

tends to include more buffer time. 

In fact, hypothesis 1 reflects an approach that is very similar to the rankings that we 

criticized before: it asks for a comparison of OTP between LCCs and TNCs while 

ignoring all other factors that may have an influence on OTP. Starting from that, we are 

curious whether there is still a significant difference in OTP when we control for some 

influencing factors. Accordingly, we arrive at our second hypothesis.  

Hypothesis 3: Even after controlling for airport size, competition and other 

factors, LCCs still register shorter arrival delays.  

We will carefully reflect hypothesis 3 in the context of hypothesis 2. Next to that we 

will introduce a measure of OTP that is unaffected by schedule padding. Chapter 2.1 

introduced excess travel time which we adopt in our analysis. We simply rephrase 

hypothesis 3 by swapping arrival delay with excess travel time. This leads to hypothesis 

4:  
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Hypothesis 4: After controlling for airport size, competition and other factors, 

LCCs register shorter excess travel time.   

Until now, hypotheses 1 to 4 checked differences between the two carrier types. 

Hypothesis 5, on the other hand, is concerned with airlines’ individual performances. It 

answers the question of how individual airlines drive the overall LCC effect and 

whether the group of LCCs is rather homogenous or heterogeneous. Hence, it states: 

Hypothesis 5: The overall LCC OTP is driven by a homogenous set of 

individual OTP.  
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5 Research Design 

This chapter describes how we will test our 5 hypotheses. Essentially, we use a 

statistical approach, analysing flight data from Europe. At first, section 5.1 explains 

which OTP data we have at hand. It also explains how our sample has been selected, 

collected, and revised. Section 5.2 then outlines the statistical methods that we use. 

Section 5.2 also contains an overview over our variables.  

5.1 Data Collection and Sample Selection 

Generally, there are two types of sources of OTP data available: (1) governmental 

institutions (2) international organizations and private companies. Whereas major U.S. 

carriers are obliged to report OTP data to the Bureau of Transportation Statistics, 

European airlines are not confronted with such regulation. Notwithstanding; this paper 

requires European data.  

Currently, the best source for European delay data is EUROCONTROL. 

EUROCONTROL collects data and provides statistics and forecasts on European air 

traffic for more than 10 years now. Yet, neither is EUROCONTROL part of official 

institutions (e.g. EU), nor is reporting by airlines mandatory. Moreover, only aggregated 

delay data is available to the general public. Access to other data is only allowed to 

those professionally engaged in Air Traffic Flow Management and aircraft operations.  

For Europe, other private data providers serve as an alternative. This analysis is carried 

out based on the OAG’s Historical Flight Status Database. OAG provides individual 

flight data and documents scheduled and actual departure/arrival times. As a reliability 

check, we consult a separate data set of FlightStats, another private data provider. A 

randomly selected set of twenty flights shows a 95% match of data. Dobruszkes (2009) 

also attests the quality of OAG data by comparing OAG data with data from national 

statistics and data published by airlines. Actually, this is not a surprise, because we 

expect data providers to collect their data from similar sources, namely direct airline 

and airport data feeds.  

From the OAG database we obtain a first sample that includes all non-stop flights of 

Western Europe’s largest airlines
 
between April 2012 and September 2012. Airline size 

is defined by the amount of passengers carried and figures are included in Appendix B. 

We include 13 airlines in total – 5 LCCs and 8 TNCs. The LCC group contains easyJet 
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(U2), Ryanair (FR), Norwegian (DY), Air Berlin (AB) and Vueling (VY). TNCs are 

represented by SAS (SK), Swiss (LX), Lufthansa (LH), KLM (KL), Iberia (IB), British 

Airways (BA), Alitalia (AZ) and Air France (AF). Including at least 5 airlines of each 

type ensures that our inferences are conclusive and transferrable to other airlines beyond 

the sample. We make sure not to include the low cost affiliates of TNCs. Charter or 

cargo flights are not part of the sample.   

We want to highlight that the included LCCs share some common characteristics; but 

are, of course, not fully identical. These similarities and differences, do, on the one 

hand, justify a group comparison of LCCs and TNCs later in our analysis, but, on the 

other hand, also call for the investigation of OTP of individual LCCs. We will come 

back to this point later. 

We chose the sample period because of four main reasons. Firstly, data from 2012 gives 

an up-to-date picture of delays. Secondly, a period of six months depicts a manageable 

sample size. Thirdly, focus of this research is on variation over airlines or carrier types 

and not on variation over time. Fourthly, we clearly exclude severe winter weather in 

December, January, February and partly March. Investigating the effect of all kinds of 

weather conditions is not the primary intention of this study.  

As a next step, we further reduce the sample in accordance with specific sample 

selection criteria. We omit all flights that have a missing reported departure status or 

reported arrival status. Cancelled and diverted flights are also excluded. For codeshare 

flights only the flight of the airline that actually operates the flight remains in the 

sample. For specific days, that are subject to large scale disruptions, such as bomb 

disposals or major construction works, we neglect the affected airports’ data for that 

day. As a last step we detect obvious mistakes in OAG’s reporting and coding. To give 

two examples, we omit flights where the actual departure time equals the actual arrival 

time or where flights arrive exorbitantly early or late
12

. 

We consider flights from airport X to airport Y as different markets than the other 

direction from Y to X. In line with that, Mayer & Sinai (2002) argue that there may be 

different wind directions as well as other physical differences which justify separate 

treatment. Furthermore, arrival at a particular airport may be significantly different from 

                                                           
12

 We exclude flights that either depart one hour or more minutes to early, or arrive 6 hours or more too 
late. 
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departure at the same airport. For these reasons, we keep all routes’ flights into both 

directions in the sample. Thereby we follow Borenstein (1990), Mayer & Sinai (2002), 

Berry (1990) and Rupp (2001). As against, the sample of Rupp and Holmes (2006) 

include flights only in one direction to avoid correlation. As a result of our adjustments 

the final sample contains 1,056,842 individual flights. Based on this sample, we want to 

test our hypotheses. 

5.2 Statistical Approach and Underlying Measures 

We use five customized statistical methods to test the five hypotheses. The schematic 

figure below (see Figure 1) illustrates each of these methods. 

 

Figure 1: Statistical Approach 

Hypothesis 1 

The hypothesis stated: “given LCCs’ airport, route and scheduling choices, LCCs have 

shorter arrival delays than TNCs.” It calls for a simple mean comparison in arrival 

delay between LCCs and TNCs, which is illustrated at the top of Figure 1. We use the 

variable delay_min_a to measure arrival delay and compute it as mentioned in chapter 

2.1. As said before such an isolated mean comparison ignores all other factors that may 

have an influence on arrival delay. The results are included in chapter 6.1. 
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Hypothesis 2 

Either confirming or rejecting hypothesis 2 is necessary for our conclusion about 

hypothesis 3. The hypothesis addresses whether “there is a significant difference in 

scheduled travel time between LCCs and TNCs which indicates that on average one or 

the other carrier type tends to include more buffer time.” We also conduct a two-mean 

comparison between LCCs and TNCs, this time comparing scheduled travel time. We 

measure scheduled time as indicated in chapter 2.1 (sched_travelt_min). Chapter 6.2. 

contains the results. 

We are aware that a mean comparison across all kinds of flights and routes is 

inaccurate. Therefore, we compare only routes that are served by both, LCCs and TNCs. 

This is the subsample highlighted in Figure 1. Using the subsample does at least provide 

some basis for comparability. However, it might be that one carrier type is more present 

on longer routes relative to the other carrier type. To avoid bias by that we divide the 

average scheduled travel time by the average distance travelled (average scheduled 

travel time / km).  

Hypothesis 3  

Hypothesis 3 states “even after controlling for airport size, competition and other 

factors, LCCs still register shorter arrival delays.”This calls for the first formal 

regression analysis of our study (see chapter 6.2). We want to find out about the 

difference in arrival delay between LCCs and TNCs – under the condition that 

everything else is equal. The regression will be based on the equation below which 

represents the assumed relationship between arrival delay and its explaining factors. All 

factors refer to the literature review from chapter 2.2. Precisely, we consider arrival 

delay as a function of mainly eighteen factors. However, we might decide at a later 

stage to drop some variables due to strong correlation. 

               

 (                                                                               

                                                             

                                                                                  

                                                        )  

(1) 
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The index (it) of the delay_min_a  variable in equation (1) reflects that we will exploit 

the high level of accuracy that our data set allows us to investigate. This means that we 

run our estimations on individual flight level. Equation (1) describes the arrival delay of 

a particular flight i at a particular time t (day and time of day).  Flight i thereby specifies 

a combination of an operating airline j and a route r that connects origin o and 

destination d.  Using flight level data allows us to explicitly control for flight-specific 

factors that influence arrival delays, such as departure time or adverse weather on a 

particular day.  

The main independent variable of interest is the measure of carrier type. In our equation 

we include a dummy variable (LCCi) to mark whether the flight is a LCC or TNC flight. 

This variable then captures the average difference in arrival delay between TNCs and 

LCCs, while comparing them under similar circumstances.  

Hypothesis 4  

Independent of whether we find indication that some airlines engage in more schedule 

padding than others or not (hypothesis 3), we will investigate a measure of OTP that is 

unaffected by airline’s scheduling decisions. We consider excess travel time as more 

“objective”. Chapter 2.1 introduced excess travel time which we adopt in our analysis:  

Hypothesis 4 (“After controlling for airport size, competition and other factors, LCCs 

register shorter excess travel time”) requires a similar statistical approach as hypothesis 

2. We will use a regression, too. For simplicity reasons we will also use exactly the 

same control variables (see chapter 6.2). A LCC dummy variable is included as main 

independent variable and allows for comparison with the coefficient of the arrival delay 

regression. 

Hypothesis 5 

We go a step beyond the overall LCC effect. Instead we compare means across 

individual airlines thereby observing individual airline-specific effects. Thereby, we are 

able to refer to hypothesis 5 that stated: the overall LCC OTP is driven by a 

homogenous set of individual OTP. Precisely, airline-specific dummy variables will 

reveal whether individual airlines’ performances are in line with the overall 

performance of the group (LCC vs. TNC) they belong to. We compare size and 

magnitudes of individual airlines effects with the overall LCC effect. Given that 

individual airlines’ shares in the sample will not be fully constant, we will also be able 
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to comment on to what extent the overall LCC effect is severely driven by an 

exceptional performance of a dominant airline in the sample. Thereby, we add 

transparency to the existing research. The analysis of individual airlines stretches 

throughout the entire research (see chapter 6.1 and 6.2). In the regression analysis we 

will include individual airline-specific dummy variables as main independent variables 

of interest. 

Control Variables 

We use mainly different types of control variables. Generally, we divide them into five 

broad categories: Airport variables, economic/competitive variables, logistical 

variables, weather variables and other variables. Most control variables are listed in 

Table 3. Not listed but included are fixed-effect dummies for each month
13

. An 

extended table that includes all mean values is included in Appendix C. 

We want to highlight the distinct features that many of our control variables share. 

There are basically two such features: their time invariance and categorical nature. All 

airport variables and economic/competitive variables are time invariant. Due to 

restrictions in data collection we can only document these variables once. This issue 

will be further elaborated on later in this chapter. At that point we will also explain how 

(and why) we used a dedicated data set to construct these variables. As mentioned, 

many of our control variables are categorical variables based on quantitative data. With 

the help of that we are able to account for the expected nonlinearity in the relationship 

between some variables and OTP.  

Some control variables, such as slot coordination, hub categories, and airport 

concentration, require some further explanation. In fact, the three levels of slot 

coordination are based on the IATA’s Worldwide Scheduling Guidelines  (IATA, 

2010). The four hub size categories, on the other hand, are not based on any 

international standard but aligned with other academic research, which supports 

comparability. For the HHI holds that an index value close to zero implies the existence 

of many airlines that all have quite a small market share at an airport. An index value of 

one, as opposed to that, shows that there is only one carrier dominating the airport. In 

addition, Appendix D contains a short section about how the HHI index has been 

constructed. 
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 Time fixed effects also to prevent spurious results. 
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Category Variable Unit  Definition 
A

ir
p

o
rt

  

S
lo

t 
C

o
o
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in

at
io

n
 

lev1_d 0;1 
▲

 whether the departure airport is non-coordinated  

lev2_d 0;1 
▲

 whether the departure airport is schedule facilitated  

lev3_d 0;1 
▲

 whether the departure airport is coordinated 

lev1_a 0;1 
▲

 whether the arrival airport is non-coordinated 

lev2_a 0;1 
▲

 whether the arrival airport is schedule facilitated 

lev3_a 0;1 
▲

 whether the arrival airport is coordinated 

A
ir

p
o

rt
 H

u
b

s 

nhub_ d 0;1 
▲

 whether the observed flight departs from a non-hub airport (number of 

destination ≤ 25) 

shub_d 0;1 
▲

 whether the observed flight departs from a small hub airport (25 > 

number of destinations ≤ 45) 

mhub_d 0;1 
▲

 whether the observed flight departs from a medium hub airport (45 > 

number of destinations ≤ 70) 

lhub_d 0;1 
▲

 whether the observed flight departs from a large hub airport (number of 

destinations > 70) 

nhub_a 0;1 
▲

 whether the observed flight arrives at a non-hub airport (number of 

destination ≤ 25) 

shub_a 0;1 
▲

 whether the observed flight arrives at a small hub airport (25 > number 

of destinations ≤ 45) 

mhub_a 0;1 
▲

 whether the observed flight arrives at a medium hub airport (45 > 

number of destinations ≤ 70) 

lhub_a 0;1 
▲

 whether the observed flight arrives at a large hub airport (number of 

destinations > 70) 

A
ir

li
n

e 
H

u
b

s 

airl_nhub_d 0;1 
▲

 whether the observed flight departs from  a non-hub airport (number of 

destination ≤ 25)  

airl_shub_d 0;1 
▲

 whether the observed flight departs from one of its own small hub 

airport (25 > number of destinations ≤ 45) 

airl_mhub_d 0;1 
▲

 whether the observed flight departs from one of its own medium hub 

airport  (45 > number of destinations ≤ 70) 

airl_lhub_d 0;1 
▲

 whether the observed flight departs from one of its own large hub 

airport  (number of destinations > 70) 

airl_nhub_a 0;1 
▲

 whether the observed flight arrives at a non-hub airport (number of 

destination  ≤ 25) 

airl_shub_a 0;1 
▲

 whether the observed flight arrives at one of its own small hub airport 

(25 > number of destinations ≤ 45) 

airl_mhub_a 0;1 
▲

 whether the observed flight arrives at one of its own medium hub 

airport  (45 > number of destinations ≤ 70) 

airl_lhub_a 0;1 
▲

 whether the observed flight arrives at one of its own large hub airport  

(number of destinations > 70) 

E
co

n
o

m
ic

/ 

C
o

m
p

et
it

iv
e 

 

R
o

u
te

 C
o

m
p

et
. mon 0;1 

▲
 whether the observed flight operates on a monopoly route (served by 

just one carrier) 

Duo 0;1 
▲

 whether the observed flight operates on a duopoly route (served by two 

carriers) 

>2comp 0;1 
▲

 whether the observed flight operates on a competitive route (served by 

more two carriers) 

H
H

I 

hhi_d  [0,1]
►

 

Herfindahl-Hirschmann-Index at departure 

hhi_d [0,1]
►

 

Herfindahl-Hirschmann-Index at arrival 
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L
o

g
is

ti
ca

l 
 

    

normdept [0,1]
►

 

Normalized departure time (00:00 equal 0; 23:59 equals 1) 

Dist km
►

 approximate flight distance between arrival and departure airport 

seatcap 
►

 approximate number of seats available based on airplane type 

(individual airline-specific adjustments are not accounted for) 

D
ay

s 
o

f 
W

ee
k

 

mon 0;1 
▲

 whether observed flight takes place on Monday 

Tue 0;1 
▲

 whether observed flight takes place on Tuesday 

wed 0;1 
▲

 whether observed flight takes place on Wednesday 

Thu 0;1 
▲

 whether observed flight takes place on Thursday 

Fri 0;1 
▲

 whether observed flight takes place on Friday 

Sat 0;1 
▲

 whether observed flight takes place on Saturday 

Sun 0;1 
▲

 whether observed flight takes place on Sunday 

W
ea

-t
h

er
  

 

advweath_d 0;1 
▲

 whether the departure airport is affected by adverse weather on the 

observed day 

advweath_a 0;1 
▲

 whether the arrival airport is affected by adverse weather on the 

observed day 

O
th

er
   strike_da 0;1 

▲
 whether the departure and/or arrival airport is affected by 

strike on the observed day 

Lcc 0;1 
▲

 whether observation is a LCC flight (main independent variable) 
 

▲ 
Dummy variable 

►  
Continuous or discrete variable 

Table 3: Variable Definition 

Construction of Control Variables 

Our control variables are only partly constructed from the data set mentioned in section 

5.1. Some of them rely on other data sources. From the OAG data set we obtain our 

dependent variables as well as individual airline-specific dummies and time related 

variables (e.g. departure time, day of week and month).  

Nonetheless, it is hard to assess the level competition on routes, concentration at 

airports and hub size since our OAG data set only covers intra-European destinations 

and a limited number of airlines. The data set reflects competition between the major 

European carriers while it ignores, for instance, smaller carriers that are, in fact, strong 

competitors on a distinct geographical scope, but not large enough in total to be 

included in our analysis. 

A less-than-ideal approach helps to construct some of the competitive variables. Thanks 

to OAG we have access to another data set that was provided as one piece. That data set 

covers schedule data of all worldwide flights operated between 5
th

 March and 12
th

 

March 2012. In the following we will refer to that data set by using the term “March 

data set”. With help of that we are able to specify some of our control variables. We 

find answers to the following questions related to our control variables: how many 
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destinations does an airline serve from a given airport? To what extent have particular 

airlines dominant positions at airports? Which routes are monopolistic / duopolistic? 

However, the approach has some drawbacks to be kept in mind. First, assessment of 

variables is solely based on that single week in March. The insights from that week are 

used for the whole period of observation. That is why some variables are time invariant. 

We assume that over the sample period of six months there are no large-scale changes 

in airline schedules. Accordingly, we do not expect airport concentration, route 

competition and hub size to vary dramatically during our sample period. Also on the 

short-term, i.e. between weekdays and weekends for instance, we assume no changes. 

Other scholars are stricter about that. Rupp accounts for potential day-to-day changes by 

calculating concentration on daily level. Others update concentration every month, 

which is useful considering that during the long sample periods of five to ten years 

circumstances may change.  

For seating capacity and slot coordination we use extra sources. Our main OAG data set 

specifies the employed aircraft type for each flight, so that we can easily enrich our 

dataset by data on seating capacity
14

. The individual airlines’ exact seating capacity may 

differ from the maximum seating capacity we included in our data set. But at least it is a 

useful approximation. Furthermore, the level of slot coordination at each airport can be 

found in the IATA’s Worldwide Scheduling Guidelines (IATA, 2010). From 

OpenFlights
15

 we obtain linear distances in km between each origin destination pair.  

Unfortunately, we are not able to accurately control for adverse meteorological 

conditions. Difficulties in data collection are the main reason. In principal, the large 

majority of European airports are active weather reporting stations which collect data on 

frequent basis. However, complete European data is not easily accessible to the public 

as it is in the U.S. via the tools of the National Oceanic & Atmospheric Administration 

(NOAA). There is no such tool on European level. Instead we may use national weather 

services and private weather services that offer data, such as historical observations on 

                                                           
14

 Seating capacity of aircraft types is obtained from aircraft manufacturers’ websites and aircraft 
databases on the internet. This is only an approximation. Typically, airlines are free to configure 
airplanes according to their preferences. Some airlines, for instance, go without space-sapping business 
class and therefore are able to install more seats. 
15

 www.openflights.org 
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daily and hourly basis. However, we will not make use of these sources because of 

several reasons
16

.  

Not considering weather at all would harm our analysis. In chapter 2.2 we learned that 

weather is a major root cause of flight delays. In fact, we want to investigate the 

difference in OTP of LCCs and TNCs, so we cannot ignore that some carriers probably 

serves a higher share of “difficult” airports with respect to weather than the others do. 

The “ATFCM Weekly Briefings” lists adverse weather per day and airport
17

, which 

allows us to create a weather control variable. 

  

                                                           
16

 This data is not perfectly suitable for this research due to four reasons: (1) While we can easily access 
data on temperature and precipitation, we struggle to find data on other weather conditions affecting 
air traffic (e.g. cumulonimbus or low ceiling) (2) access to data is partly charged (3) historical weather 
data does only involve certain stations which leads to missing data in the sample (or approximations by 
using the closest available station). (3) Only small amounts of data can be retrieved at a time which is 
too time-consuming considering the large sample size. 
17

 To illustrate the level of precision in the weather reporting, we cite EUROCONTROL’s March report. 
There it says for the March 3rd: “EDDM fog. LSZH low visibility. […]”.It should be kept in mind that the 
actual level of delays does not only depend on the actual weather conditions but also on how 
authorities deal with it and what short-term regulations they put in place.    
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6 Findings 

6.1 Sample Characteristics 

In this chapter we want to get familiar with the composition of our sample. The section 

sheds light on the sample’s basic characteristics. We will also confirm the fundamental 

difference in airport usage between LCCs and TNCs, which is suspected to have an 

influence on OTP. 

Figure 2 depicts individual 

proportions of each single carrier. It 

shows that LCCs make up around 

on third of the whole sample. 

Among them, easyJet constitutes 

the largest carrier (ca. 13%). 

Lufthansa contributes around 22% 

of all observation. With this large 

share, Lufthansa is not only the 

most observed TNC but also the 

most observed airline in general 

within the sample.  However, it 

should be noted that these shares do 

not reflect actual market shares
18

.  

Observations are almost equally distributed over the sample period. Accordingly, each 

month comprises around one sixth of total observations. Moving from months to weeks 

as units of observation, we note that from Sunday to Thursday daily traffic comprises 

around one seventh of total observations (ca. 14%). On Saturdays, however, traffic is 

                                                           
18

 There are two main reasons: first, proportions are exclusively related to the sample of 13 airlines; 
second, we deleted records that missed data or where not plausible with respect to their documented 
arrival/departure time information. Thus, carriers’ shares are only to a limited extent representative. To 
be more precise about representativeness, we compare our sample distribution with the carrier 
distribution of the March data set. The respective data set contains all intra-European flights from 
various airlines during a single week in March 2012. What we infer about representativeness is only an 
approximation. Comparing the two samples, we see that our 13 airlines can be assigned to around one 
half of all operated flights. The remaining 50% of the observations from the March data set belong to 
various other airlines. In fact, there are far more than 100 other airlines operating within Europe. The 
shares within our group of 13 airlines are relatively well portrayed. Only 4 airlines are either slightly 
under-sampled (FR, SK) or slightly over-sampled (LH, IB).  

Figure 2: Share of Carriers (LCCs vs. TNCs) 
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much lower (12%). By contrast, Thursdays and Fridays are relatively traffic-intense (ca. 

15%). 

With respect to adverse weather it should be noted that 7% of our observations are 

affected by adverse weather at departure and again 7% by adverse weather at arrival. 

Not even 1% of all flights suffer from both, adverse weather at departure and arrival. 

Certainly, these values underestimate the real occurrence of (severe) adverse weather 

conditions that have an impact on take-off and landing. The top four airports (areas) 

affected by adverse weather are London, Frankfurt, Munich and Amsterdam.  

Compared to adverse weather, the occurrence of strikes is relatively rare. Less than 

0.5% of all observed flights operate on days where their departure and/or arrival airport 

is affected by strike or where the airline crew itself is on strike. In fact, Lufthansa’s 

German hubs have a comparatively high strike rate during our sample period, which is 

due to a broad Lufthansa crew strike in summer 2012. Therefore, it is not surprising that 

Lufthansa is the most strike-affected airline within our sample.  

The usage of airport hubs varies across carrier types and individual carriers. An 

investigation of the whole sample reveals that “large hub-large hub” flights comprise 

around 42%. Such connections are not entirely covered by TNCs – in fact, around one 

quarter is comprised by LCCs. Considering each carrier type’s share in the sample we 

see that TNCs and LCCs make similar use of such connections. Around 90% of all 

flights do either depart from or arrive at large hubs. As opposed to that, there are only a 

few “non-hub-non-hub” pairs. Not even 0.5% of the whole sample can be attributed to 

that category. Cases where either the departure or the arrival airport is a non-hub make 

up around 17% of the sample. Again such flights are served by both carrier types.   

Figure 3 illustrates each carrier’s individual usage of airport hubs at departure. It reveals 

that usage of airport hubs in our sample varies across individual carriers. There are four 

main findings. First, large hubs (more than 70 destinations) are very dominant as we 

mentioned already. Second, British Airlines and KLM make intensive use of large hubs. 

Third, Ryanair has the lowest share of large hub departures. Fourth, Vueling is 

somehow exceptional – all other LCCs have much lower shares of large hub departures 

than TNCs have. In fact, Vueling departs from large hubs roughly as often as the TNC 

KLM, which may be explained by the fact that it predominantly flies from Barcelona.  
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We add to these findings about airport size that there is also a large difference with 

respect to route competition. While around 20% of all TNC flights operate on 

monopolistic routes, LCCs hold a monopolistic position in almost 45% of all cases. 

 

 

Figure 3: Departure Airport Size by Carrier 

6.2 Basic Two-Mean Comparison  

This section focuses on hypothesis 1 and 2 that both call for a two-mean comparison in 

arrival delay between LCCs and TNCs. Before that we will take a broad look on OTP, 

also checking departure delay. Later on we limit our investigation to arrival delay.  

Figure 4 graphically illustrates the proportions of on-time, delayed and over-punctual 

flights by carrier type at arrival and departure. The numbers show that almost 60% of 

LCCs flights in our sample departed behind schedule. TNCs have fewer delayed 

departures – only around 54% departed delayed. However, it is interesting that LCCs 

seem to “catch up” during flight operations. At arrival LCCs perform much better: only 

31% of LCCs’ flights arrive behind schedule, whereas 45% of TNCs’ flights are 

delayed. With this first findings for Europe we find similar evidence as Rupp & 

Sayanak (2008) found for the U.S. The difference between OTP at departure and arrival 

suggests that LCCs (1) either experience less air traffic congestion than non-LCC 

carriers and/or (2) allocate more time to serve a route than non-LCCs.  
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Figure 4: OTP of LCCs and TNCs 

Table 4 adds detail to the insight from Figure 4. It shows mean values by grouped 

carrier type as well as individual carriers. Highlighted in green and grey are the best and 

worst performers for each variable. As observed before, at departure TNCs largely 

perform better than LCCs. Best performers at departure are depending on the variable 

KLM, SAS and Alitalia. KLM, for instance, has the lowest share of departures with a 

delay of one minute and more (40.44%). However, at arrival LCCs achieve better OTP.  

While best performers are only LCCs, worst performers can solely be found among the 

TNCs. EasyJet has the lowest share of delayed arrivals (del>=1_01_a) in the entire 

sample (23.13%). Second and third best performers in this category are the LCCs 

Norwegian (25.59%) and Ryanair (27.68%).  

We learnt that easyJet has the lowest share of arrivals that are delayed by one minute or 

more (del>=1_01_a). However, we asked ourselves: how does the rank of easyJet 

change if we adopt the DOT’s and Flightstat’s 15 minutes allowance for the definition 

of delays? This allowance is very common and most rankings are based on it. In 

Appendix D we show that changes in the ranking largely occur at easyJet’s charge. We 

also conclude from that: TNCs have comparatively many short delays. These delays 

become “invisible” if we adopt the 15 minutes allowance. As a result TNCs perform 

better under this evaluation method. 

Two-Mean Comparison Results – Overall LCC effect in Arrival Delay (Hypothesis 1) 

Most importantly, LCCs’ average arrival delay in min (delay_min_a) is around one 

minute smaller than the one of TNCs. On average, LCCs arrive 5.82 minutes late, 
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whereas TNCs mean arrival delay is 6.88 minutes. Like for all other variables in Table 

4, t-tests revealed that this difference is significant. This finding allows us to confirm 

hypothesis 1. We conclude: given LCCs’ airport, route and scheduling choices, LCCs 

have shorter arrival delays than TNCs.   

Having a look at other OTP measures reveals how this difference evolves. In fact, LCCs 

have a lower share of delayed arrivals than TNCs (31.47% vs. 45.04%). At the same 

time, if delayed, LCCs have a larger average arrival delay than TNCs (18.47 min vs. 

15.27 min). Thus, the higher average arrival delay of all delayed LCCs flights gets 

wiped out by the smaller proportion of flights being delayed.   
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U2 10.55 11.47 59.18% 19.38 -4.61 4.95 23.13% 21.39 29.41 

AB 6.86 8.48 49.83% 17.02 4.55 8.40 48.42% 17.34 26.92 

FR 10.08 10.85 66.30% 16.36 -2.39 4.78 27.68% 17.26 29.24 

VY 9.81 10.73 66.92% 16.04 2.40 7.00 37.61% 18.62 36.09 

DY 6.64 7.89 55.33% 14.27 -4.08 3.23 25.59% 12.63 23.52 

LCCs
2
 9.32 10.39 59.13% 17.57 -1.31 5.82 31.47% 18.49 29.19 

LH 6.89 7.89 61.21% 12.89 3.62 7.17 49.28% 14.54 23.66 

AF 5.00 6.35 52.17% 12.18 1.08 5.40 40.88% 13.22 23.43 

IB 6.02 7.50 53.36% 14.06 6.56 9.87 56.90% 17.35 29.48 

KL 3.21 5.25 40.44% 12.99 -1.98 4.06 30.98% 13.10 22.94 

SK 2.38 4.23 42.54% 9.96 -0.80 3.90 33.54% 11.62 18.70 

BA 8.90 10.42 47.49% 21.97 7.05 10.97 52.33% 20.98 30.55 

AZ 7.96 8.64 54.45% 15.87 1.32 5.74 35.66% 16.09 33.53 

LX 8.93 9.87 67.60% 14.61 5.18 8.46 52.75% 16.04 25.46 

TNCs
2
 6.11 7.42 54.03% 13.73 2.81 6.88 45.04% 15.27 25.19 

Overall 7.10 8.33 55.59% 14.98 1.55 6.55 40.88% 16.03 26.42 
1
 Recall airline’s codes: easyJet (U2), Air Berlin (AB), Ryanair (FR), Norwegian (DY), Vueling (VY), 

Lufthansa (LH), Air France (AF), Iberia (IB), KLM (KL), SAS (SK), British Airways (BA), Alitalia (AZ), 

Swiss (LX) 
2
Weighted average. To verify the difference in means across carrier types (LCCs vs. TNCs) we consult t 

statistics. T statistics are sufficiently large to reject the null hypothesis of no mean difference between LCCs 

and TNCs. 
3
 Departure schedule deviation: max. 255 minutes;  min. -59 minutes 

4
 Arrival schedule deviation: max. 343 minutes;  min. -140 minutes  

5
 Departure delay: max. 255 minutes;  min. 0 minutes 

6
 Arrival delay: max. 343 minutes;  min. 0 minutes   

 

Table 4: Two-Mean Comparison OTP  
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Two-Mean Comparison Results – Difference in Scheduled Travel Time (Hypothesis 2) 

We already found out that LCCs seem to catch up during flight operation and alleged 

schedule padding. For more insights about schedule padding we will now compare 

LCCs’ and TNCs’ scheduled flight times based on a subsample of overlapping routes
19

. 

We observe that LCC flights take on average 101.39 minutes, while TNCs require only 

90.54 minutes on average.  The t-test confirms that there is a significant difference of 

almost 11 minutes scheduled flight time.  

However, if we correct for average flight distance the difference vanishes. On the 

overlapping routes, LCCs schedule on average 0.123 minutes per km, whereas TNCs 

schedule 0.127 per km
20

. The t-test reveals that the difference is insignificant. Based on 

that, we reject hypothesis 2. To conclude: there is no significant difference in scheduled 

travel time between LCCs and TNCs. Therefore, we found no indication that one carrier 

type tends to include more buffer time than the other.  

6.3 Regression Analysis 

We will now further isolate the overall LCC effect and individual airline-specific 

effects. We will be using regression analyses that control for the influence of other 

factors that affect OTP. The regressions comply with the proposed statistical methods 

for hypothesis 3, 4 and 5 (see Figure 1). The dependent variables are delay_min_a and 

excess_min.  

This chapter is structured as follows: first, it presents a short correlation analysis that 

gives a tentative idea about the relationship of arrival delay and its potentially 

explaining factors. Second, it will comment on the selection of proper regression 

models. Thirdly, the chapter reports on the regression results, going through the results 

hypothesis by hypothesis.  

Correlation Analysis  

We note that OTP measures are not too strongly correlated with our independent 

variables. Correlation coefficients exceed |0.1| only in just a few cases. The correlation 

matrix in Appendix F also reveals that the variable delay_min_a is most correlated with 

adverse weather conditions at arrival and departure (adverse_d and adverse_a) and the 

normalized departure time (normdep). In these cases, the coefficients are positive, 

                                                           
19

 n = 334,870 individual flights.  
20

 Average flight distance on overlapping routes: LCC = 826.15 km; TNC = 714.02 km. 
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meaning that flights tend to have larger delays at arrival when there are adverse weather 

conditions or departure time is late. Less strong but also positive is the dummy for fully 

coordinated airports (lev1_a), implicitly confirming the assumption that more congested 

airports have higher average arrival delays. Next to that we find that operation on 

monopoly routes (mono) tends to reduce arrival delays.  

In that context, we recall that LCCs operate on monopolistic routes more frequently 

than TNCs. Even though the correlation between these factors and arrival delay is not 

too strong, we are curious to what extent the strong performance of LCCs (see 

hypothesis 1) is driven by such route choices, for instance.  Our regressions will help to 

adjust the overall LCC effect from hypothesis 1.   

Regression model selection 

At first we choose the appropriate regression models. The selection of the model largely 

depends on distributional characteristics of the dependent variable.  Delay_min_a and 

excess_min are classified as count data. They share the three common properties of 

count data
21

: first, they do not take negative values; second, they take integer values; 

and third, they are positively skewed as the histograms in Appendix G illustrate.  

Count data rules out OLS regression, which would be a natural starting point. OLS is 

problematic because it assumes residual errors to be normally distributed. In some cases 

(e.g. a skewed continuous variable) a (log-) transformation helps to produce errors that 

approximately follow a normal distribution. However, in our case the high number of 

zero observations (e.i. zero minutes delay) complicates the transformation from a 

skewed distribution to a normal distribution
22

. Moreover, OLS could practically also 

predict negative values. This is theoretically impossible if we recall our delay definition.  

As a consequence, our data calls for dedicated count data models. Most widely used is 

the Poisson model or the negative binominal model (NB). Both models are expected to 

fit our data better than OLS, because they are based on a skewed, discrete probability 

distribution and permit estimated values to be negative.  

                                                           
21

 To clarify these features, recall that delay_min_a does not equal schedule deviation. In line with the 
definition from section 2.2 flights that are on-time or too early have a delay of 0 minutes. Also excess 
travel time (excess_min) can only be non-negative by definition – a particular flight can never perform 
better than the same month’s best-performer but only just as good. Accordingly, we denote these two 
variables by "y,y ∈ " N_0= {0,1,2,…}. 
22

 The logarithm of zero is not defined. 
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We prefer the NB model over the Poisson model because our two variables violate an 

important pre-condition of the Poisson model. The Poisson model assumes that the 

expected value is equal to the variance. This feature of the Poisson model is widely 

known as equi-dispersion property. As said, our variables violate this property. De 

facto, their variances exceed the means by far. Depending on which variable we 

observe, the variance is 12 times or even 36 times than the mean
23

. An extra formal test 

according to Cameron & Trivedi (2010) confirmed this complication: our data is so-

called “over-dispersed”. Accordingly, we favour the NB model. We verify that NB 

models are superior to Poisson models by investigating goodness-of-fit statistics of our 

regressions
24

.  

The delay_min_a regression clearly requires a subclass of the NB model, the so called 

zero-inflated negative binomial model (ZINB). As the model’s name implies the ZINB 

model accounts for excess zeros in the dependent variable. We note that delay_min_a 

shows a large excess of zero observations. At arrival more than half of our total 

observations show zero minutes delay (59.12%). The Vuong test confirms the 

appropriateness of the ZINB model at 1% significance level. 

Excess_min does not show such an inflation of zeros, so that the usage of the ZINB 

model is not self-evident. In fact, not even 2% are zero observations
25

. However, we 

carefully check goodness-of-fit statistics to decide whether the ZINB model may also be 

appropriate here. We find that – for counts above zero – the NB and the ZINB model 

both predict probabilities that are close to actual frequencies. For zero excess travel 

time, however, the NB model seriously underestimates actual frequencies compared to 

the ZINB model. We consult the Vuong test again and find that it also favours the ZINB 

model at a 1% significance level for excess_min. Thus, we will proceed with the ZINB 

model in all our regressions. 

                                                           
23

 Precisely, the variance of delay_min_a (239.01) is far higher than its mean (6.55). Comparatively, 
excess_min shows a variance (213.23) is around 12 times larger than its mean (18.09). 
24

 The R² that we know from linear models is not applicable in this case. Instead, we use a few other 
statistics: (1) the user-written STATA “countfit” command (2) log-likelihood values (3) AIC/BIC statistics. 
Moreover, every NB regression contains statistics of the over-dispersion parameter α. If α is not 
significantly different from zero the NB distribution is equal to a Poisson distribution. At this point, we 
can already tell that in the models that we will present later α is always significantly different from zero. 
Therefore, we have another formal proof that NB models are appropriate. 
25

 Recall that zero observations in case of excess_min represent the best performing benchmark flights 
that other flights are compared to. These flights operated within the minimum feasible travel time.  
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A major strength of the ZINB model is that it allows us to differentiate between the 

probability of a flight being delayed and – in case of delay – the actual size of the delay 

in minutes. Accordingly, the ZINB regressions contain two parts. The first part 

estimates the probability P of being on-time as a function of our independent variables, 

using a logistic function. The second part – a negative binomial equation – then predicts 

the expected delay size in minutes. The excess travel time ZINB regressions follow the 

same logic. 

The on-time probability as well as the delay size is modelled as functions of the same 

independent variables. Notwithstanding; we do not include all control variables that 

equation (1) suggested. We drop the airport hub size effect due to correlation with the 

slot coordination variables
26

.  

The full results of our ZINB estimations are included in Table 5. The delay regressions 

(delay_min_a) occur in the left part of the table, whereas the excess travel time 

regression (excess_min) is shown on the right side. For both, we distinguish between a 

basic model that is concerned with the overall LCC effect and a modified model that 

contains individual airline-specific effects . 

The logistic estimations always occur at the top, further down on the second page of the 

output the negative binomial estimation is presented. Consider that the logistic estimates 

reflect the probability P of being on-time. Positive logistic coefficients increase the 

probability of being on-time. In order to get an idea how much things are changing, we 

first calculate odds ratios and then the percentage change in odds.  

Regression Results - Overall LCC Effect in Arrival Delay (Hypothesis 3) 

Hypothesis 3 asks for the difference in arrival delay between LCCs and TNCs – under 

the condition that everything else is equal. To give answer to that we consult the 

regression output in column 2, 3 and 4 of Table 5.  

We find that for most independent variables our arrival delay regression results are 

largely as expected. More than 70% of our independent variables are significant 

predictors of arrival delay. Many of the independent variables seem to affect the 

probability of being on-time as well as in case of delay the exact size of the delay. 

                                                           
26

 Based on an extended correlation analyses we observed that the level of slot coordination as well as 
airport hub size highly reflect airport size and congestion. We double-check our decision to drop airport 
hub size variables by investigating goodness-of-fit statistics with and without these variables. In fact, 
including airport hub variables does not decrease the AIC or BIC statistics. 
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Among these variables are also the two coefficients of our main independent variable, 

the LCC dummy variable.  

LCC flights are more likely to be on-time than TNC flights. This still holds under the 

“everything else equal assumption” which is valid for all the following regressions. 

Given that, we note that operation by LCCs increases the probability of on-time arrival 

– even if we subtract out the favouring effect of monopoly routes and non-congested 

airports. To be precise, LCC flights’ odds
27

 of being on-time are around 120% higher 

than TNC flights’. What we cannot do is to quantify the exact difference in on-time 

arrival probabilities because these probabilities depend on what values the other 

variables take
28

.  

The negative binominal section complicates a clear inference with respect to hypothesis 

3. It reveals that in case of delay the expected size of the delay in minutes tends to be 

higher for LCCs than for TNCs. In case of delay, the expected delay for a LCC flight is 

27% higher than the expected delay of a TNC flight that operates under exactly the 

same circumstances. To sum up: the probability of being delayed is lower of LCCs; but 

– in relatively rare case of delay then – LCCs are expected to have higher delays than 

TNCs.  

These results do not allow either confirming or rejecting hypothesis 3. Instead, the 

ZINB model is only able evaluate two separated, more differentiated hypotheses: 

Hypothesis 3a: Even after controlling for airport size, competition and other 

factors, LCC’s probability of being on-time is still higher than for TNCs. 

Hypothesis 3b: (Even) after controlling for airport size, competition and other 

factors, LCCs (still) register shorter arrival delays in case of delay
29

.  

Our results confirm hypothesis 3a, but reject hypothesis 3b. In fact, this is in line with 

our introductory findings in the “basic two-mean comparison” section.  

Regression Results – Overall LCC Effect in Excess Travel Time (Hypothesis 4) 

                                                           
27

 Odds of being on-time = probability of being on-time / probability of being delayed  
28

 As opposed to that odds ratios are constant. They are independent of what values the other 
dependent variables take. We can calculate exact probabilities once we define specific values for each of 
the independent variables. 
29

 We put “even” and “still” in brackets because we found in chapter 6.2 that LCCs actually have higher 
arrival delays in case of delay. 
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In the first instance, we have no reason to be sceptical about the findings right above. 

We assume that the arrival delay regression results are not biased by schedule padding. 

This assumption is based on chapter 6.2, which indicated that neither one of the two 

carrier types tends to include more buffer time.  

However, the statistical method we used to reject hypothesis 2 was not very 

sophisticated, which makes us switch to excess travel time as dependent variables in 

this section. The results of the related ZINB model with excess_min as dependent 

variable are presented in Table 5, too. There we find that most control variables do also 

play a significant role in explaining excess travel time.  

Using excess travel time as OTP measurement, changes our results in favour of LCCs. 

Again, LCCs perform better in the logistic estimation, meaning that everything else 

equal, LCC flights are more likely to achieve a route’s (and month’s) minimum feasible 

travel time. LCC flights’ odds of being on-time are much higher than TNC flights’ (ca. 

163% as opposed to 120% in the arrival delay regression). At the same time, we cannot 

confirm the arrival delay regression’s conclusion about the inferiority of LCCs when it 

comes to expected size of delays in minutes. It is rather that the carrier type does not 

significantly influence the size of excess travel time at all. The coefficient is very small. 

If there is a difference at all, the expected excess travel time of LCCs is not even 2% 

smaller compared to TNCs’ expected excess travel time. 

We conclude that LCC flights are more likely to operate within the minimum feasible 

travel time. If they do not, their minutes delay compared to the minimum feasible time 

is not significantly different from TNCs’ delay. If we now join these findings, we are 

able to confirm hypothesis 4: 

Hypothesis 4: After controlling for airport size, competition and other factors, 

LCCs register (on average) shorter excess travel time.   

Obviously, under regular OTP measurements (delay_min_a) LCCs are comparatively 

discriminated. The more objective OTP measurement (excess_min) reveals that LCCs 

perform better than TNCs.  
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Zero-inflated negative binomial regression model (ZINB) on arrival delays 

(delay_min_a)  Obs = 1,056,842 (zero obs = 624,825) 
Zero-inflated negative binomial regression model (ZINB) on excess travel time 

(excess_min)  Obs = 1,056,842 (zero obs = 19,054) 

Overall LCC effect Individual airline-specific effects  Overall LCC effect Individual airline-specific effects  

Variable Coeff. S.E. Coeff.( %) Coeff. S.E. Coeff.( %) Coeff. S.E. Coeff.( %) Coeff. S.E. Coeff.( %) 

 Probability P of having no delay as logistic function30 Probability P of having no excess travel time as logistic function 

lev1_d .3474*** .0675 41.5 .2256*** .0614 25.3 .6472*** .0932 91.0 .6854*** .1026 98.5 

lev2_d .1296*** .0481 13.8 .1655*** .0425 18.0 .3257*** .1135 38.5 .3020*** .1107 35.3 

lev1_a .2204*** .0716 24.7 .1087* .0591 11.5 .6172*** .1046 85.4 .6208*** .1117 86.6 

lev2_a .0861* .0503 9.0 .1314*** .0418 14.0 .0525 .0587 5.4 .0579 .0592 6.0 

airl_shub_d -.0024 .0498 -.2 -.1497*** .0454 -13.9 -.0615 .1051 -6.0 -.0851 .1131 -8.2 

airl_mhub_d -.1407** .0668 -13.1 -.3055*** .0553 -26.3 -.3112*** .0723 -26.7 -.4561*** .0862 -36.6 

airl_lhub_d .0144 .0594 1.5 -.1576** .0627 -14.6 -.1476 .1157 -13.7 -.1568 .1034 -14.5 

airl_shub_a .0003 .0512 .0 -.1341*** .0457 -12.5 -.1095 .0910 -10.4 -.1425 .0982 -13.3 

airl_mhub_a .1166 .0565 12.4 -.0358 .0521 -3.5 -.4035*** .0820 -33.2 -.5046*** .0935 -39.6 

airl_lhub_a .5223*** .0529 68.6 .3481*** .0623 41.6 -.4808*** .0843 -38.2 -.5604*** .1144 -42.9 

Mono .1497** .0599 16.2 .0281 .0458 2.8 .6321*** .0634 88.2 .6212*** .0613 86.1 

Duo .0859** .0390 9.0 -.0278 .0342 -2.7 .2218*** .0773 24.8 .2336*** 0748 26.3 

Hhi_d .0142 .1533 1.4 -.0588 .1429 -5.7 .0605 .1480 6.2 .0410 .1573 4.2 

Hhi_a .0071 .1396 .7 -.0808 .1197 -7.8 .1457 .1960 15.7 .1089 .2118 11.5 

Normdept -.3101*** .0449 -26.7 -.3566*** .0440 -30.0 .6041*** .0890 83.0 .5686*** .0867 76.6 

Dist -.0001** .0000 .0 -.0001*** .0000 -0.0 .0009*** .0000 0.1 .0009*** .0000 0.1 

Seatcap -.0032*** .0002 -.3 -.0029*** .0003 -0.3 -.0023*** .0007 -0.2 -.0029*** .0007 -0.3 

advweath_d -.4480*** .0225 -36.1 -.4450*** .0205 -35.9 -.1462** .0726 -13.6 -.1269* .0652 -11.9 

advweath_a -.5028*** .0217 -39.5 -.4960*** .0203 -39.1 -.0405 .0659 -4.0 -.0404 .0602 -4.0 

Strike_da -.2293*** .0428 -20.5 -.2163*** .0434 -19.4 .4811*** .1580 61.8 .4807*** .1493 61.7 

Lcc .7902*** .0438 120.4    .9680*** .0632 163.3    

AB (Air Berlin)    -1.1852*** .0599 -69.4    -.1338 .0902 -12.5 

FR(Ryanair)    -.2361*** .0587 -21.0    .1153 .1095 12.2 

VY (Vueling)    -.6559*** .0853 -48.1    -.2474** .1000 -21.9 

DY (Norwegian)    -.1116 .0915 -10.6    -.0010 .1422 -0.1 

LH (Lufthansa)    -1.420*** .0514 -75.8    -.8759*** .0942 -58.4 

AF (Air France)    -1.2781*** .0706 -72.1    -1.4873*** .1352 -77.4 

IB (Iberia)    -1.8640*** .0801 -84.5    -1.1168*** .1112 -67.3 

KL (KLM)    -.8278*** .0821 -56.3    -.6370*** .2020 -47.1 

SK (SAS)    -.6758*** .0599 -49.1    -1.1548*** .1483 -68.5 

BA (British Airways)    -1.3626*** .0636 -74.4    -.9141*** .1189 -59-9 

AZ (Alitalia)    -.6380*** .1096 -47.2    -.2284 .2094 -20.4 

LX (Swiss)    -1.3929*** .0648 -75.2    -.9121*** .1293 -59.8 

_cons .4534*** .0819  1.9756*** .0892     -4.4720*** .1519  

Table continued on next page 

                                                           
30

 Coeff. gives the log-odds of on-time arrival. Exp(coeff.) gives the odds ratio, e.i. the odds of LCCs to arrive on-time are 2.20 times (= exp(0.7902)) higher than TNCs. We 
receive coeff. (%) by calculation [Exp(coeff.)-1]*100. As mentioned above in the text before, from log-odds we can directly make inferences about probabilities: Increasing the 
log-odds of an on-time arrival means increasing the probability, and vice-versa decreasing the log-odds of an on-time arrival means decreasing the probability. Thus, as the sign 
of the log-odds ratio shows the direction of its relationship. 
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 Arrival delay size in minutes in case of delay as NB model Excess travel time size in minutes in case of excess travel time as NB model 

lev1_d -.1307 ***   .0302 -12.3 -.0527** .0234 -5.1 -.1708*** .0384 -15.7 -.1275*** .0336 -12.0 

lev2_d -.0249 .0195 -2.5 -.0173 .0172 -1.7 -.1179*** .0260 -11.1 -.0716*** .0236 -6.9 

lev1_a -.1403*** .0328 -13.1 -.0702*** .0255 -6.8 -.1000** .0480 -9.5 -.0629 .0391 -6.1 

lev2_a -.0441** .0188 -4.3 -.0382** .0160 -3.7 -.1924*** .0339 -17.5 -.1288*** .0297 -12.1 

airl_shub_d -.1444*** .0219 -13.4 -.0045 .0194 -0.5 .0872** .0364 9.1 .1912*** .0343 21.1 

airl_mhub_d -.1572*** .0209 -14.5 -.0450** .0190 -4.4 .0145 .0500 1.5 .1203*** .0389 12.8 

airl_lhub_d -.2121*** .0209 -19.1 -.0138 .0233 -1.4 -.1510*** .0375 -14.0 -.0594 .0367 -5.8 

airl_shub_a -.1209*** .0219 -11.4 .0149 .0198 1.5 .0406 .0353 4.1 .1504 .0309 16.2 

airl_mhub_a -.1486*** .0196 -13 -.0442** .0192 -4.3 -.0791** .0332 -7.6 .0617** .0321 6.4 

airl_lhub_a -.1548*** .0209 -14.3 .0444* .0237 4.5 -.0038 .0320 -0.4 .0889*** .0318 9.3 

Mono .0250 .0188 2.5 .0290* .0172 2.9 -.1324*** .0400 -12.4 -.1718*** .0273 -15.8 

Duo -.0201 .0145 -2.0 .0041 .0126 0.4 -.0935*** .0266 -8.9 -.0850*** .0228 -8.1 

Hhi_d .0693 .0640 7.2 .0676 .0615 7.0 -.0624 .0975 -6.1 -.0833 .0887 -8.0 

Hhi_a .0133 .0582 1.3 .0311 .0528 3.2 -.2405*** .0900 -21.4 -.2740*** .0791 -24.0 

Normdept .6628*** .0221 94.0 .6406*** .0223 89.9 -.0969*** .0146 -9.2 -.1108*** .0140 -10.5 

Dist .0001*** .0000 0.0 .0001*** .0000 0.0 .0002*** .0000 0.0 .0003*** .0000 0.0 

Seatcap .0003** .0001 0.0 -.0000 .0001 -0.0 .0010*** .0002 0.1 .0008*** .0002 0.1 

advweath_d .2988*** .0119 34.8 .2878*** .0110 33.3 .0096 .0137 1.0 .0405*** .0099 4.1 

advweath_a .3688*** .0120 44.6 .3621*** .0116 43.6 .0373*** .0128 3.8 .0705*** .0109 7.3 

Strike_da .7280*** .0437 107.1 .7160*** .0433 104.6 -.0737*** .0181 -7.1 -.0350** .0170 -3.4 

Lcc .2368*** .0167 26.7    -.0162 .0300 -1.6    

AB (Air Berlin)    -.1943*** .0221 -17.7    -.0265 .0483 -2.6 

FR (Ryanair)    -.1967*** .0261 -17.9    .0617 .0424 6.4 

VY (Vueling)    -.1321*** .0277 -12.4    .2658*** .0568 30.4 

DY (Norwegian)    -.5969*** .0368 -44.9    -.2806*** .0670 -24.5 

LH (Lufthansa)    -.4344*** .0205 -35.2    -.0860** .0407 -8.2 

AF (Air France)    -.4517*** .0275 -36.3    .1536*** .0439 16.6 

IB (Iberia)    -.1832*** .0290 -16.8    .2913*** .0577 33.8 

KL (KLM)    -.5494*** .0327 -42.3    .0843 .0627 8.8 

SK (SAS)    -.6128*** .0290 -45.8    -.2129*** .0440 -19.2 

BA (British Airways)    -.1274*** .0243 -12.0    .1653*** .0474 18.0 

AZ (Alitalia)    -.2107*** .0350 -19.0    .3771*** .0734 45.8 

LX (Swiss)    -.2736*** .0272 -23.9    -.1306*** .0499 -12.2 

_cons 2.0832*** .0314  2.3681 .0373  -5.6875*** .1272  2.7325*** .0625  

 Log likelihood = -2288059                

Prob > chi2i = 0.0000    

Log likelihood = -2272396              

Prob > chi2i = 0.0000    

Log likelihood =  -3954643 

Prob > chi2i = 0.0000    

Log likelihood =  -3926376 

Prob > chi2i = 0.0000    

Note: Standard errors are clustered by route and carrier (e.i. AMSMUC, KLM). Regressions included month-specific fixed effects and day-of-week fixed effects (both not reported). *, ** and *** indicate 

10%, 5% and 1% significance level. 

Table 5: Regression Output 
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Regression Results – Individual Carrier Effects (Hypothesis 5) 

This section evaluates whether the overall LCC effects from the previous two 

regressions is driven by a homogenous set of individual OTP. Colloquially spoken, we 

ask: can we measure all LCCs (and TNCs) with the same yardstick?  

To evaluate hypothesis 5 we re-estimate the two regression models for delay_min_a and 

excess_min again, using individual individual airline-specific dummy variables instead 

of the overall LCC dummy variable. We use the largest LCC in the sample, easyJet, as 

reference. Thus, we drop the easyJet dummy variable from the regression. Results are 

included in Table 5. Around 80% of the added individual individual airline-specific 

dummy variables are significant. 

We observe that the overall LCC effect in the arrival delay regression is largely driven 

by a very exceptional performance of easyJet, also considering the large share of 

easyJet in the sample
31

. This exceptional position is twofold: first, compared to easyJet 

(and ceretis paribus), all other twelve airlines’ flights are less likely to be on-time; 

second, if delayed, easyJet has a higher expected delay than any other airline in the 

sample. 

If we have a look at excess travel time, easyJet’s performance does not stand that much 

apart from other carriers. Signs of the coefficients are actually mixed across the two 

carrier groups – some airlines perform better than easyJet, others worse. However, we 

note that the LCCs are collectively strong when it comes to the probability of on-time 

arrival
32

. Among them, Ryanair is the best-performing airline of all. This means Ryanair 

is most likely of all to achieve the minimum possible travel time.  Given all that, this 

explains the large overall LCC effect (around 163% higher odds of having zero excess 

travel time).  

At the same time signs and significances of the coefficients in the negative binomial 

regression are mixed across airlines. Both LCCs and TNCs as groups are very 

heterogeneous. The exact minutes of excess travel time seem to vary from airline to 

airline, rather than from carrier type to carrier type. We find interesting that all LCCs 

seem to have extraordinary control over the general occurrence of delays. Yet, in case of 

delay, the exact size of excess travel time is hard to influence for all carriers.  

                                                           
31

 Remember that easyJet is almost twice as large as the second largest LCC in the sample. 
32

 E.i. TNCs do consistently perform worse than easyJet, whereas LCCs at least perform „less worse“ than 
all other TNCs, not different from easyJet or better than easyJet.  
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Throughout the regressions, we observe that the two carrier groups are not very 

homogenous in their OTP. However, the TNC group seems to be slightly more 

homogenous. To come to that conclusion, we reviewed standard deviations of the 

coefficients and variation coefficients (see Table 6). Depending on the regression part 

and carrier group the variation coefficients (relative standard deviations) vary between 

(-)20.85% and 936.91%, which we generally consider as quite high. Throughout the 

analysis, the LCC group has higher variation coefficients (neglecting signs of 

coefficients), which leads us to the insight that the LCC group is less homogenous than 

the TNC group. 

Dependent variable: delay_min_a excess_min 

Carrier type: LCC TNC LCC TNC 

on-time 

probability 

mean -37.28 -66.83 -5.58 -58.36 

standard deviation 26.62
33

 13.93 14.84 17.76 

Variation coefficient  -61.84%
34

 -20.85% -266.13% -30.43% 

positive coefficient signs 0/4 0/8 1/4 0/8 

size of 

delay in 

case of 

delay 

mean -23.23 -28.91 2.43 10.43 

standard deviation 14.67 12.62 22.72 22.78 

Variation coefficient -63.18% -43.64% 936.91% 218.51% 

positive coefficient signs 0/4 0/8 2/4 5/8 

Table 6: Analysis of coefficients (coeff. (%)) in regression models 

To sum up; it is difficult to generalize across carriers of the same carrier groups. 

Instead, we have to be careful when assuming that the overall LCC effects from 

hypothesis 3 and 4 reflect all LCCs’ performance in equal measures. Accordingly, we 

reject hypothesis 5 and note instead: the overall LCC OTP is only to some extent driven 

by a homogenous set of individual OTP. 

  

                                                           
33
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7 Conclusion 

This paper aims at extending knowledge of the link between airline business models and 

service quality. It specifically asks whether LCCs are more punctual than TNCs. 

Previous research has not answered this question for the European case so far. 

Therefore, this paper complements existing research and adds transparency and 

accuracy to simple OTP rankings that are available on the internet.  

As a first glance, a basic two-mean comparison of the share of arrival delays reveals 

that on average LCCs perform better than TNCs. Only 31% of LCCs’ flights arrive at 

least one minute behind schedule, whereas TNCs’ flights are in 45% of all cases 

delayed. LCCs’ expected arrival delay is around one minute smaller than the one of 

TNCs. Depending on which variable we focus on easyJet is either best performer or 

worst performer: among all airlines, easyJet has the lowest share of delayed arrivals.  At 

the same time, if delayed, easyJet’s flights have the highest average delay (21.39 min) 

of all airlines.  

In our literature review we found indication that LCC’s strong results may be embedded 

in the LCC business model. Most importantly, serving uncongested airports and routes 

is expected to lead to an OTP advantage compared to TNCs. As a reaction to that, we 

extended our statistical analysis towards a more formal regression analysis, controlling 

for airport variables as well as economic, logistical and weather variables.  

Even after controlling for some factors, our results follow the direction of the mean 

comparison. In fact, we predict a higher probability of on-time arrival for LCCs than for 

TNCs. Under equal circumstances, LCC flights’ odds of being on-time are around 

120% higher than TNC flights’. Yet, we confirm what we found before: those LCC 

flights that may potentially suffer from delay tend to have higher average arrival delays 

than TNCs (ca. 27% higher).  

With the so far mentioned OTP metrics our results may be spurious as airlines are able 

to manipulate by including longer buffer times than others. To account for this, we 

introduced excess travel time as an OTP metric that is unaffected by so-called “schedule 

padding”. Using excess travel time changes our results even more in favor of LCCs. If 

LCCs and TNCs operate under equal circumstances, LCCs are more likely to achieve 

the minimum feasible travel time.  
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This paper also finds considerable evidence that the overall LCC effect that we have 

investigated is not driven by an entirely homogenous group of individual LCCs. This 

makes it difficult to generalize within the LCC group. Our conclusion about individual 

airline-specific effects is mainly threefold. First, the overall LCC effect is mostly in line 

with easyJet’s individual performance. This is due to the fact that easyJet contributes 

most LCCs observation to the sample. Second, LCCs are collectively strong when it 

comes to the probability of on-time arrival. Third, the TNC group is slightly more 

homogenous than the LCC group. 

7.1 Implications for Practice and Policy 

This paper argues that airline OTP data should be publicly available. It calls on EU 

Institutions to make airlines publish OTP statistics on a regular basis. In the current 

situation scholars and passengers have strong difficulties in gathering OTP data. For 

passengers this results in a lack of transparency. For researcher it limits the 

opportunities to investigate OTP systematically. Only if OTP data becomes available, 

OTP research for the European airline industry is able to become more mature.  

7.2 Limitations and Future Research 

Our proposed methodology could clearly be further developed. We identified four 

major limitations that might be a starting point for adaptions.  

First, our research did not consider any performance gap between LCCs and TNCs 

when it comes to cancellation. Instead, cancelled flights have been fully excluded from 

the analysis right from the beginning. Thereby, we follow Mazzeo (2003), arguing that 

it is hard to include cancelled and completed flights in the same analysis without 

making assumptions about comparability of such flights. However, we suggest future 

research to investigate cancelled flights as well.  

Second, we are aware that our delay variables might not be a good approximation for 

passenger travel experience. In accordance with that, Wang (2007) notes that regular 

delay variables tend to underestimate the real penalties of missed connections that occur 

because of late arrival. Our research ignores this as it investigates OTP from a system 

performance perspective. Yet, we conclude that future research on passengers’ 

perception of OTP and passenger trip delay metrics might be an interesting complement 

to this research. 
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Third, we are aware that the OTP advantage of LCCs may vanish with the inclusion of 

airport-specific effects
35

. Due to constraints in computing power we were not able to 

include such effects. Therefore, we remain careful with our interpretation and suggest 

future research to take up this point. However, if we assume the OTP advantage of 

LCCs’ not to vanish, we may attribute a part of LCCs’ strong performance to such 

factors as fleet age, maintenance procedures or process efficiency.    

Fourth, we neglected some other factors that might have an influence on airlines’ OTP 

and airlines do not have explicit control of. Such are, for instance, different national air 

transport regulations. We assumed airlines to face exact the same rules in their origin 

country and at the airports they serve.  

 

  

                                                           
35

 These variables account for unobserved airport specific effects. Rupp & Sayanak (2008) bring in 
airport equipment, maintenance facilities, and airport capacity as such effects. Models would have been 
estimated with and without airport dummies. This comparison allow to answer the following question: 
to what extent is an airline’s arrival delay driven by the particular airports that airline is serving (Rupp & 
Sayanak, 2008)? Even though Rupp and Sayanak did not find that LCCs registered longer arrival delays or 
excess travel time after controlling, we may face exactly this effect for Europe.  
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9 Appendix 

Appendix A: CODA Delay Causes 

 CODA 

Cause 

Description IATA 

Code 

Primary 

Delays 

Airlines 

Passenger and Baggage 11-19 

Cargo and Mail 21-29 

Aircraft and Ramp Handling 31-39 

Technical and Aircraft Equipment 41-49 

Damage to Aircraft & EDPI/Automated 

Equipment Failure 

51-58 

Flight Operations and Crewing 61-69 

Other Airline Related Causes Others 

Airport 

ATFM due to Restriction at Departure 

Airport 

83 

Airport Facilities 87 

Restrictions at Airport of Destination 88 

Restrictions at Airport of Departure 89 

En-Route 

ATFM due to ATC En-Route 

Remand/Capacity 

81 

ATFM due to ATC Staff / Equipment En-

Route 

82 

Security and Immigration 85-86 

Weather 
Weather (other than ATFM) 71-79 

ATFM due to Weather at Destination 84 

Miscellaneous Miscellaneous 98-99 

Reactionary 

Delays 

Reactionary Late Arrival of Aircraft, Crew, Passengers 

or Load 

91-96 
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Appendix B: Passenger Traffic by Airline 

Airline Monthly 

Passenger 

Traffic in 

millions (ca.) 

Reference month  

Air France-KLM Group 6
36

 (jointly)  

International Airlines Group 

(Iberia-British Airways) 

5.1
37

 (jointly)  

Lufthansa 5
38

 December 2012 

Ryanair 4.8
39

 December 2012 

easyJet 4.3
40

 December 2012 

Alitalia 1.95
41

 approximated from 2010 

statistics 

Scandinavian Airlines 1.8
42

 approximated from November 

2012 - January 2013 statistics 

Air Berlin 1.7
43

 December 2012 

Norwegian Air Shuttle ASA 1.3
44

 December 2012 

Swiss International Air Lines 1.2
45

 December 2012 

Vueling Airlines 0.9
46

 December 2012 

Note: Turkish Airlines and Aeroflot have comparatively high monthly passenger 

numbers but are excluded because this research focusses on Western-European airlines.  

Note II: The TNCs Austrian Airlines and Swiss are part of the Lufthansa group but 

excluded because of their low individual passenger numbers. Germanwings, which also 

belongs to the Lufthansa group, is not part of the sample because we neglect low cost 

affiliates of TNCs. 

 

 

 

  

                                                           
36

 http://www.airfranceklm-finance.com/en/Financial-information/Press 
releases?theme%5B%5D=Traffic&annnes=2012&x=14&y=12 
37

 http://www.iairgroup.com/phoenix.zhtml?c=240949&p=irol-rnsArticle_Print&ID=1771747&highlight  
38

 http://investor-relations.lufthansagroup.com/en/finanzberichte/traffic-figures.html  
39

 http://www.ryanair.com/en/news/ryanair-december-traffic-up-2-percent  
40

 http://corporate.easyjet.com/investors/monthly-traffic-statistics/2012/december.aspx?sc_lang=en  
41

 http://de.wikipedia.org/wiki/Alitalia  
42

 http://feed.ne.cision.com/wpyfs/00/00/00/00/00/1E/18/0E/wkr0006.pdf  
43

 http://ir.airberlin.com/en/ir/facts-about-the-group/traffic-statistics/2012/December  
44

 http://www.norwegian.no/Global/norway/omnorwegian/dokumenter/trafficinformation/ 
2012/Traffic%20Figures%20DEC%202012.pdf  
45
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Appendix C: Variable Definition 

Cate-

gory 

Variable Unit  Definition Share of 

tot. 

sample 

Mean  Stand. 

dev. 

A
ir

p
o

rt
 V

a
ri

a
b

le
s 

S
lo

t 
C

o
o

rd
in

at
io

n
 

lev1_d 0;1 
▲

 whether the departure airport is 

non-coordinated  

7.96%   

lev2_d 0;1 
▲

 whether the departure airport is 

schedule facilitated  

14.68%   

lev3_d 0;1 
▲

 whether the departure airport is 

coordinated 

77.35%   

lev1_a 0;1 
▲

 whether the arrival airport is 

non-coordinated 

78.30%   

lev2_a 0;1 
▲

 whether the arrival airport is 

schedule facilitated 

13.94%   

lev3_a 0;1 
▲

 whether the arrival airport is 

coordinated 

7.76%   

A
ir

p
o

rt
 H

u
b

s 

nhub_ d 0;1 
▲

 whether the observed flight 

departs from a non-hub airport 

(number of destination ≤ 25) 

8.67%   

shub_d 0;1 
▲

 whether the observed flight 

departs from a small hub airport 

(25 > number of destinations ≤ 

45) 

13.38%   

mhub_d 0;1 
▲

 whether the observed flight 

departs from a medium hub 

airport (45 > number of 

destinations ≤ 70) 

11.68%   

lhub_d 0;1 
▲

 whether the observed flight 

departs from a large hub airport 

(number of destinations > 70) 

66.27%   

nhub_a 0;1 
▲

 whether the observed flight 

arrives at a non-hub airport 

(number of destination ≤ 25) 

8.78%   

shub_a 0;1 
▲

 whether the observed flight 

arrives at a small hub airport (25 

> number of destinations ≤ 45) 

12.89%   

mhub_a 0;1 
▲

 whether the observed flight 

arrives at a medium hub airport 

(45 > number of destinations ≤ 

70) 

11.65%   

lhub_a 0;1 
▲

 whether the observed flight 

arrives at a large hub airport 

(number of destinations > 70) 

66.69%   

A
ir

li
n

e 
H

u
b

s 

airl_nhub_

d 

0;1 
▲

 whether the observed flight 

departs from  a non-hub airport 

(number of destination ≤ 25)  

62.67%   

airl_shub_

d 

0;1 
▲

 whether the observed flight 

departs from one of its own 

small hub airport (25 > number 

of destinations ≤ 45) 

11.07%   

airl_mhub

_d 

0;1 
▲

 whether the observed flight 

departs from one of its own 

14.83%   
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medium hub airport  (45 > 

number of destinations ≤ 70) 

airl_lhub_

d 

0;1 
▲

 whether the observed flight 

departs from one of its own 

large hub airport  (number of 

destinations > 70) 

11.43%   

airl_nhub_

a 

0;1 
▲

 whether the observed flight 

arrives at a non-hub airport 

(number of destination ≤ 25) 

62.34%   

airl_shub_

a 

0;1 
▲

 whether the observed flight 

arrives at one of its own small 

hub airport (25 > number of 

destinations ≤ 45) 

10.95%   

airl_mhub

_a 

0;1 
▲

 whether the observed flight 

arrives at one of its own 

medium hub airport  (45 > 

number of destinations ≤ 70) 

14.47%   

airl_lhub_

a 

0;1 
▲

 whether the observed flight 

arrives at one of its own large 

hub airport  (number of 

destinations > 70) 

12.24%   

E
co

n
o

m
ic

/C
o

m
p

et
it

iv
e 

V
a

ri
a

b
le

s 

R
o

u
te

 C
o

m
p

et
. 

mon 0;1 
▲

 whether the observed flight 

operates on a monopoly route 

(served by just one carrier) 

27.94%   

duo 0;1 
▲

 whether the observed flight 

operates on a duopoly route 

(served by two carriers) 

35.24%   

>2comp 0;1 
▲

 whether the observed flight 

operates on a competitive route 

(served by more two carriers) 

36.82%   

H
H

I 

hhi_d  [0,1] 
►

 

Herfindahl-Hirschmann-Index 

at departure 

 .22 .12 

hhi_d [0,1]
 

►
 

Herfindahl-Hirschmann-Index 

at arrival 

 .22 .12 

L
o

g
is

ti
ca

l 
V

a
ri

a
b

le
s 

 flightt Min 
►

  

Time from gate push-back time 

at departure until gate arrival at 

destination 

 93.60 47.94 

normdept [0,1]
 

►
 

Normalized departure time 

(00:00 equal 0; 23:59 equals 1) 

 .57 .20 

dist Km
►

 approximate flight distance 

between arrival and departure 

airport 

 796.20 512.24 

seatcap 
►

 approximate number of seats 

available based on airplane type 

(individual airline-specific 

adjustments are not accounted 

for) 

 149.48 46.21 

D
ay

s 
o

f 
W

ee
k

 mon 0;1 
▲

 whether observed flight takes 

place on Monday 

14.81%   

tue 0;1 
▲

 whether observed flight takes 

place on Tuesday 

14.36%   

wed 0;1 
▲

 whether observed flight takes 

place on Wednesday 

14.96%   
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Appendix D: Herfindahl-Hirschman Index 

Concentration in our analysis refers to airport concentration and is measures by the 

Herfindahl-Hirschman index (HHI). The two HHI variables per OTP observation 

represent both the origin and destination airports’ concentration during the first week of 

March 2012. We chose the one-time calculation due to limited data constraints. The 

value is used as proxy for the entire period of observation. As opposed to Mazzeo 

(2003) the HHI in our analysis is not based on revenue but simply on the number of 

connections from a particular airport. The index is defined as the sum of the squared 

individual market shares of all airlines serving a particular airport as the following 

equation expresses: 

     ∑   

 

   

  

Where     denotes the market share of carrier j at airport a and N is the number of 

airlines operating at the airport. Accordingly, airports with low concentration levels are 

used by many airlines with small market share. Highly concentrated airports, in 

contrast, are dominated by only a handful of carriers.  

 

thu 0;1 
▲

 whether observed flight takes 

place on Thursday 

15.11%   

fri 0;1 
▲

 whether observed flight takes 

place on Friday 

15.22%   

sat 0;1 
▲

 whether observed flight takes 

place on Saturday 

11.87%   

sun 0;1 
▲

 whether observed flight takes 

place on Sunday 

13.68%   

W
ea

th
er

 

V
a

ri
a

b
le

s 

 

advweath_

d 

0;1 
▲

 whether the departure airport is 

affected by adverse weather on 

the observed day 

6.58%   

advweath_

a 

0;1 
▲

 whether the arrival airport is 

affected by adverse weather on 

the observed day 

6.69%   

O
th

er
  

 strike_da 0;1 
▲

 whether the departure and/or 

arrival airport is affected by 

strike on the observed day 

.43%   

lcc 0;1 
▲

 whether observation is a LCC 

flight (main independent 

variable) 

30.67%   

▲ 
Dummy variable; 

►  
Continuous or discrete variable 

No missing data for any of the variables (n=1 056842) 
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Appendix E: Using 15 minutes allowance as delay definition 

If we shift now to 15 minutes allowance (del>=15_01_a) we see that the ranking partly 

changes (results not included in Table 4). Changes for the arrival ranking are largely at 

EasyJet’s charge: while easyJet was the top performer before, other airlines are now 

better ranked. For instance, SAS has the lowest proportion of flights delayed by 15 

minutes or more. This superior performance of SAS is in line with what is often 

communicated in the media. After SAS Norwegian Airlines follows. British Airways 

and Iberia perform worst in this ranking. Europe’s largest LCCs Ryanair and easyJet 

take positions in the upper half of the ranking.  
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Appendix F: Pairwise Correlation Analysis 

  
delay_

min_d 

del>=

1_01_

d 

del>=

15_01

_d 

delay_

min_a 

del>=

1_01_

a 

del>=

15_01

_a 

excess

_min 

delay_mind_d 1 
      

del>=1_01_d .465 1 

 
 

   del>=15_01_

d 
.722 .4271 1 

 

   delay_min_a .855 .3025 .5486 1 
   

del>=1_01_a .4111 .4217 .4192 .5098 1 

  del>=15_01_

a 
.6124 .4271 1 .7367 .4192 1 

 excess_min .0031 -.0035 .0078 .2027 .2128 .0078 1 

lev1_d -.044 -.0735 -.0446 -.0395 -.0584 -.0446 -.0815 

lev2_d -.0536 -.1244 -.0568 -.0231 -.0512 -.0568 -.0789 

lev3_d .0738 .1527 .0768 .0451 .081 .0768 .1195 

lev1_a -.0184 -.0077 -.0171 -.0302 -.0283 -.0171 -.0571 

lev2_a -.0028 .0025 -.0076 -.0116 -.0161 -.0076 -.0634 

lev3_a .0143 .0028 .0175 .0294 .0319 .0175 .0903 

nhub_ d -.0434 -.0911 -.0437 -.0114 -.0207 -.0437 -.0778 

shub_d -.0239 -.0655 -.0278 -.0315 -.0626 -.0278 -.0552 

mhub_d .0022 -.0404 .0062 -.0123 -.0403 .0062 .0124 

lhub_d .0415 .1289 .0418 .0378 .0848 .0418 .0777 

nhub_a -.0226 -.0155 -.0244 -.005 .0113 -.0244 -.0691 

shub_a -.0005 .0143 -.0003 -.0213 -.0296 -.0003 -.0283 

mhub_a .0115 .0143 .0131 -.0129 -.0344 .0131 -.0041 

lhub_a .0061 -.0106 .006 .0269 .0377 .006 .0644 

airl_nhub_d -.0172 -.0942 -.0194 .0057 -.0265 -.0194 -.0187 

airl_shub_d -.028 -.0516 -.0322 -.0185 -.0429 -.0322 .0107 

airl_mhub_d .0528 .1133 .0617 .0128 .0405 .0617 .0557 

airl_lhub_d -.0053 .0675 -.0077 -.0048 .0373 -.0077 -.0442 

airl_nhub_a .0041 .0443 -.0001 .0327 .0563 -.0001 -.0036 

airl_shub_a .0234 .0105 .027 -.013 -.0385 .027 .0422 

airl_mhub_a .0033 -.0214 .0041 -.0046 -.0026 .0041 -.0115 

airl_lhub_a -.0319 -.0526 -.0301 -.0311 -.0437 -.0301 -.0226 

mono -.0054 -.0531 -.0003 -.0308 -.0743 -.0003 -.065 

duo -.0016 -.0012 -.0041 -.0069 -.0049 -.0041 -.0132 
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>2comp .0066 .0506 .0043 .0355 .074 .0043 .0735 

hhi_d  -.0275 -.0493 -.0211 -.0243 -.0375 -.0211 -.0624 

hhi_a  -.0075 -.007 -.0031 -.0286 -.0444 -.0031 -.0578 

normdept .0814 .0349 .0916 .0629 .0384 .0916 .0388 

dist .0808 .091 .0931 .0308 .0032 .0931 .1654 

seatcap .0911 .1305 .1011 .048 .0419 .1011 .1544 

mon -.0098 -.0091 -.0117 -.0091 -.0084 -.0117 -.0072 

tue -.039 -.0455 -.0406 -.0334 -.0394 -.0406 -.0332 

wed -.0168 -.0208 -.0177 -.0117 -.0112 -.0177 -.0122 

thu -.0054 -.0029 -.0036 -.0008 .0083 -.0036 -.0012 

fri .0373 .0334 .0325 .0364 .0373 .0325 .0306 

sat .0213 .0293 .0267 .0103 .0088 .0267 .015 

sun .0139 .0178 .0165 .0087 .0046 .0165 .0091 

advweath_d .0709 .0714 .064 .0772 .0816 .064 .0576 

advweath_a .0607 .0323 .0561 .081 .0689 .0561 .0601 

strike_da .0333 .0103 .0157 .031 .0104 .0157 .0185 

lcc .0856 .0473 .0967 -.0316 -.1273 .0967 .085 

apr .0049 -.0048 .0002 .012 .0046 .0002 -.0098 

may -.0213 -.0328 -.0219 -.0107 -.0126 -.0219 -.0268 

jun .014 .0194 .0164 .0233 .0371 .0164 .0146 

jul .0381 .0345 .0334 .0311 .0234 .0334 .0479 

aug -.0183 -.0096 -.0157 -.0364 -.0444 -.0157 -.0266 

sep -.0132 -.003 -.0089 -.0135 -.0044 -.0089 .0056 
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Appendix G: Histograms Dependent Variables 

 

Histogram delay_min_a 

 

Histogram excess_min 
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